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Inverse Scattering Problems with the

Potential Known on an Interior Subinterval

Yongxia Guo and Guangsheng Wei

The inverse scattering problem for one-dimensional Schrödinger opera-
tors on the line is considered when the potential is real valued and integrable
and has a finite first moment. It is shown that the potential on the line is
uniquely determined by the mixed scattering data consisting of the scatter-
ing matrix, known potential on a finite interval, and one nodal point on the
known interval for each eigenfunction.
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1. Introduction

In this paper we consider the inverse scattering problems for one-dimensional
Schrödinger operators on the real line and study the unique recovery of the po-
tential that is known a priori on a finite interval [a, b]. Let H be the self-adjoint
Schrödinger operator

H := − d2

dx2
+ V (x) (1.1)

on L2(R), where the potential V is real valued and belongs to L1
1(R), the class

of measurable functions on the real axis R such that
∫∞
−∞(1 + |x|) |V (x)| dx is

finite. It is known [14] that H has absolutely continuous spectrum [0,∞) and a
finite number of simple negative eigenvalues (bound-state energies), denoted by
{−κ2j}Nj=1, where κj > 0. Moreover, for each eigenvalue −κ2j , the corresponding

eigenfunction has (j − 1) zeros (nodal points) on R denoted by {xij}
j−1
i=1 .

The inverse scattering problem is about the construction of V in terms of the
scattering data consisting of a reflection coefficient, the bound-state energies, and
the bound-state norming constants (see (2.4) below). There are various methods
to solve the inverse scattering problems, such as the Marchenko method [15], the
trace method [7], and so on. However, the bound-state norming constants have
no obvious physical meaning, which is not ideal from the physical point of view.

There are many results (see [1–3, 5, 9, 17, 20, 21] and references cited therein)
related to inverse scattering problems for one-dimensional Schrödinger operators
defined on the real line R with incomplete scattering data. These results show
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that if the potential is known on a half-line, then the norming constants and
even the bound-state energies are not needed to recover the potential uniquely
(some of these papers are limited to the case where V is assumed to vanish on
a half-line). In 1994, Weder (cf., [3, p. 222]) raised a question whether one can
uniquely reconstruct V by the mixed scattering data consisting of the bound-
state energies, the reflection coefficient L(k) (or R(k)) for k ∈ R and the known
potential on a finite interval [a, b], i.e., all the bound-state norming constants
are missing. Aktosun and Weder [4] studied this inverse problem when only one
norming constant is missing and proved that the missing norming constant in
the data can cause at most a double nonuniqueness in the recovery. They also
illustrated the nonuniqueness with some explicit examples. This enlighten us
that, when the potential is known a priori on a finite interval and some norming
constants are missing, we need an additional condition to obtain the uniqueness
for this type of inverse scattering problems.

The aim of this paper is to study the uniqueness problem of recovering V
on the real line R under the condition that the potential is known a priori on a
finite interval [a, b]. More precisely, we prove that the potential, which further is
a constant on a subinterval of the known interval [a, b], is uniquely determined by
the mixed scattering data consisting of the scattering matrix and additional in-
formation related to the zeros of eigenfunctions, which are just as experimentally
observable as eigenvalues in some situations (see [6,10,11,16] and references cited
therein). Consequently, all the bound-state energies and bound-state norming
constants may be missing.

The strategy we use to prove our unique results is to establish a Vandermonde
matrix equation associated with the unknown bound-state energies and the un-
known bound-state norming constants. We find that if the known potential is
a constant on a subinterval [a0, b0] ⊂ [a, b], then the scattering matrix can de-
termine the bound-state energies uniquely by a Vandermonde matrix equation
(see (3.25) and (3.28) below). Note here that when the bound-state energies
and either one of the reflection coefficients are given as the scattering data, the
knowledge of the potential on a finite interval can not give enough information
to determine the unspecified norming constants, which means the potential can
not be constructed uniquely in generally. Therefore, we need additional informa-
tion to deal with this uniqueness problem. We put forward nodal points {xij}
as additional spectral data, and suppose there is one nodal point known on [a, b]
for each eigenfunction with j = 2, . . . , N . Especially, because the eigenfunction
corresponding to the first eigenvalue −κ21 has no zeros on R, we will further as-
sume that the value

∫ a
−∞ V (t)dt or

∫∞
b V (t)dt is known a priori. Together with

these data, we determine the norming constants uniquely, and finally obtain the
uniqueness theorem.

The method we use is a generalization of that used by Wei and Xu [22], for
which the basic idea is to relate our data to the Marchenko integral equations
where both integral equations have generalized degeneracy (see [13, 18]) in the
case that the part associated with the continuous spectrum being the same for
two systems.
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The paper is organized as follows. In Section 2, we state the main results of
this paper. Section 3 contains the proofs of our main results.

2. Main results

In this section, we will give the main results of this paper, which are associated
with the unique determination of the potential V on R under the condition that
it is known a priori on a finite interval.

Consider the radial Schrödinger equation

− y′′(k, x) + V (x)y(k, x) = k2y(k, x), x ∈ R, (2.1)

where k2 is the energy, x is the space coordinate, and the prime denotes the
derivative with respect to x. For the L1

1-class potentials there are two linearly
independent solutions of (2.1), fl(k, x) and fr(k, x), known as the Jost solutions
from the left and from the right, respectively, satisfying the boundary conditions:

e−ikxfl(k, x) = 1 + o(1), e−ikxf ′l (k, x) = ik + o(1), x→ +∞,
eikxfr(k, x) = 1 + o(1), eikxf ′r(k, x) = −ik + o(1), x→ −∞.

From the spatial asymptotics

fl(k, x) =
eikx

T (k)
+
L(k)

T (k)
e−ikx + o(1), x→ −∞, (2.2)

fr(k, x) =
e−ikx

T (k)
+
R(k)

T (k)
eikx + o(1), x→ +∞, (2.3)

we obtain the scattering coefficients, namely, T is the transmission coefficient,
and L and R are the reflection coefficients from the left and right, respectively.
The scattering matrix S(k) associated with V (x) is a 2×2 unitary matrix defined
as

S(k) =

(
T (k) R(k)
L(k) T (k)

)
.

It is known [8,14,15] that the potential V on the whole line is uniquely determined
by the scattering data and consists of

{L(k), k ∈ R} ∪
{
κj ,m

−
j

}N

j=1
or {R(k), k ∈ R} ∪

{
κj ,m

+
j

}N

j=1
, (2.4)

where m±j are the bound-state norming constants corresponding to the bound-

state energy −κ2j defined as

m−j = ‖fr(iκj , ·)‖−2, m+
j = ‖fl(iκj , ·)‖−2. (2.5)

We state the main results of this paper through two cases. We first treat
the case where all bound-state energies and bound-state norming constants are
missing (see Theorem 2.1 below). The case where only norming constants are
missing will be considered in Theorems 2.2 and 2.4.
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Theorem 2.1. Let V be a real-valued potential belonging to L1
1(R). Suppose

the following conditions are satisfied:

(i) the potential V is known on a finite interval [a, b] and is a constant C on a
subinterval [a0, b0] ⊂ [a, b];

(ii) for each j with j = 2, . . . , N, the eigenfunction fl(iκj , x) has one known nodal
point x′j satisfying x′j ∈ [a, b];

(iii) the value
∫ a
−∞ V (t)dt or

∫∞
b V (t)dt is known a priori.

Then V on the whole line is uniquely determined by the scattering matrix S(k)
for k ∈ R.

For the case where two or more norming constants are missing, we have the
following result.

Theorem 2.2. Let V be a real-valued potential belonging to L1
1(R). Suppose

the following conditions are satisfied:

(i) the potential V is known on a finite interval [a, b] and is a constant C on a
subinterval [a0, b0] ⊂ [a, b];

(ii) the norming constants {m−ls}
n
s=1 are known with 0 ≤ ln ≤ N−2, and for each

j with j /∈ {ls}ns=1 ∪ {1}, the eigenfunction fl(iκj , x) has one known nodal
point x′j satisfying x′j ∈ [a, b];

(iii) the value
∫ a
−∞ V (t)dt is known a priori.

Then V on the whole line is uniquely determined by {κj}Nj=1 and the refection
coefficient L(k) for k ∈ R.

Remark 2.3. In fact, the condition (iii) of Theorem 2.2 is not needed in the
case of l1 = 1.

For the case where only one norming constant is missing, we have the following
result.

Theorem 2.4. Let V be a real-valued potential belonging to L1
1(R). Suppose

the following conditions are satisfied:

(i) the potential V is known on a finite interval [a, b];

(ii) the norming constants {m−j }Nj=1,j 6=j0
are known with 1 ≤ j0 ≤ N ;

(iii) the value
∫ a
−∞ V (t)dt is known a priori.

Then V on the whole line is uniquely determined by {κj}Nj=1 and the refection
coefficient L(k) for k ∈ R.
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3. The proofs

In order to prove our main results, we need the following lemmas.

Lemma 3.1. Let f1(k, x), f2(k, x) and f3(k, x) be three nontrivial solutions
of the equation

y′′(k, x) = k2y(k, x), x ∈ [0, 1], (3.1)

where k2 6= 0 is fixed.

(i) If the two solutions f2(k, x) and f3(k, x) are linearly independent, then there
exists at most one non-zero real constant c and at most finitely many zeros,
denoted as x0 ∈ [0, 1], such that

[f1(f2 + cf3)]
′(k, x0) = 0.

(ii) If the two solutions f1(k, x) and f2(k, x) have a finite number of zeros on
[0, 1] respectively, then either

[f1f2]
′(k, x) ≡ 0,

or there exist at most finitely many zeros, denoted as x0 ∈ [0, 1], such that

[f1f2]
′(k, x0) = 0.

Proof. It is easy to see that equation (3.1) has the system of basic solutions
eikx and e−ikx for the fixed k2 6= 0. So, there exist constants aj and bj such that
fj(k, x) = aje

ikx + bje
−ikx for j = 1, 2, 3.

(i) For the constant c (c 6= 0), we have

[f1(f2 + cf3)]
′(k, x) = 2ikA1e

2ikx − 2ikB1e
−2ikx, (3.2)

where
A1 = a1(a2 + ca3), B1 = b1(b2 + cb3).

Obviously, the function [f1(f2 + cf3)]
′(k, x) has a finite number of zeros on [0, 1]

provided that |A1|2 + |B1|2 6= 0.
Basing on the fact that f2(k, x) and f3(k, x) are linearly independent, there

are three cases to consider. For the case |a1| = 0, |b1| 6= 0. Only if c = −b2/b3
for the cases of b2 6= 0 and b3 6= 0, we will have |A1|2 + |B1|2 = 0. Otherwise we
all have |A1|2 + |B1|2 6= 0 for any real constant c (c 6= 0). The other cases for
|a1| 6= 0, |b1| 6= 0 and |a1| 6= 0, |b1| = 0 can be treated in a similar way. In all,
there exists at most one non-zero real constant c and at most finitely many zeros,
denoted as x0 ∈ [0, 1], such that [f1(f2 + cf3)]

′(k, x0) = 0.
(ii) It gives that

[f1f2]
′(k, x) = 2ikA2e

2ikx − 2ikB2e
−2ikx, (3.3)

where
A2 = a1a2, B2 = b1b2.

Thus, if |A2|2 + |B2|2 = 0, then we have [f1f2]
′(k, x) ≡ 0. Otherwise, if |A2|2 +

|B2|2 6= 0, it is clear that the function [f1f2]
′(k, x) has a finite number of zeros

on [0, 1]. The proof is completed.
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For a finite number of different values k = ks with s = 1, . . . , n, Lemma 3.1
implies that there exist common constants c and x′ ∈ [0, 1] such that [f1(f2 +
cf3)]

′(ks, x
′) 6= 0 for all ks with s = 1, . . . , n.

The following lemma can be derived from [22, Lemma 3.1].

Lemma 3.2. Let λ1 < λ2 < · · · < λn and λ̃1 < λ̃2 < · · · < λ̃ñ with n ≥
ñ. Denote the m × n Vandermonde matrix associated with entries {λj}nj=1 by
Vm×n [λj ]

n
j=1, that is,

Vm×n [λj ]
n
j=1 =


1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λm−11 λm−12 · · · λm−1n

 . (3.4)

If there exists m′ ≤ ñ satisfying λlj = λ̃lj for j = 1, . . . ,m′,and m := n+ ñ−m′,

Vm×n[λj ]
n
j=1A = Vm×ñ[λ̃j ]

ñ
j=1Ã,

where A = [a1, . . . , an]T ∈ Rn and Ã = [ã1, . . . , ãñ]T ∈ Rñ are such that ãj 6= 0

and ãj 6= 0 for all 1 ≤ j ≤ ñ. Then λj = λ̃j, aj = ãj for all j = 1, 2, . . . , ñ and
aj = 0 for j = ñ + 1, . . . , n. In particular, in the case where m′ = 0, the result
still holds true.

For the purpose of this paper, together with the Schrödinger operator H
defined by (1.1), we consider another operator H̃ of the same form but with
different coefficient Ṽ , i.e., we consider another Schrödinger equation

− ỹ′′(k, x) + Ṽ (x)ỹ(k, x) = k2ỹ(k, x), x ∈ R. (3.5)

We agree that everywhere below if the symbol ν denotes an object related to H,
then ν̃ denotes the analogous object related to H̃.

The following lemma is crucial for the proofs of our main results.

Lemma 3.3. Consider two Schrödinger operators H and H̃. Suppose V (x) =
C = Ṽ (x) for a.e. x ∈ [a0, b0].

(i) If L(k) = L̃(k) for k ∈ R, then

N∑
j=1

(κ2j )
lm−j (frf̃r)

′(iκj , x) =

Ñ∑
j=1

(κ̃2j )
lm̃−j (frf̃r)

′(iκ̃j , x) (3.6)

for x ∈ [a0, b0] and l = 0, 1, . . . , 2M − 1 with M = N + Ñ .

(ii) If R(k) = R̃(k) for k ∈ R, then

N∑
j=1

(κ2j )
lm+

j (flf̃l)
′(iκj , x) =

Ñ∑
j=1

(κ̃2j )
lm̃+

j (flf̃l)
′(iκ̃j , x) (3.7)

for x ∈ [a0, b0] and l = 0, 1, . . . , 2M − 1 with M = N + Ñ .
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Proof. We only consider the case for L(k) = L̃(k), the other case for R(k) =
R̃(k) can be treated in a similar way. It is known [14, pp. 132–133] that the
Marchenko integral equation when used in inverse scattering problems associated
with the two operators H and H̃ can be written as

B−(x, y) + Φ−(x, y) +

∫ x

−∞
B−(x, t)Φ−(t, y)dt = 0, (3.8)

where y < x and the function Φ−(x, y) has the form

Φ−(x, y) =
1

2π

∫ ∞
−∞

[L(k)− L̃(k)]f̃r(k, x)f̃r(k, y)dk

+
N∑
j=1

m−j f̃r(iκj , x)f̃r(iκj , y)−
Ñ∑
j=1

m̃−j f̃r(iκ̃j , x)f̃r(iκ̃j , y). (3.9)

Here f̃r(k, x) is the Jost solution of (3.5) from the left and m̃−j is the bound-state

norming constant defined by (2.5) corresponding to the bound-state energy −κ̃2j .
Furthermore, the function B−(x, y) satisfies the differential equation

∂2B−

∂x2
− V (x)B− =

∂2B−

∂y2
− Ṽ (y)B− (3.10)

and the condition

B−(x, x) =
1

2

∫ x

−∞
[V (t)− Ṽ (t)]dt. (3.11)

As a transformation operator, we have

fr(k, x) = f̃r(k, x) +

∫ x

−∞
B−(x, t)f̃r(k, t)dt. (3.12)

Since L(k) = L̃(k) for k ∈ R, it follows from (3.9) that

Φ−(x, y) =
N∑
j=1

m−j f̃r(iκj , x)f̃r(iκj , y)−
Ñ∑
j=1

m̃−j f̃r(iκ̃j , x)f̃r(iκ̃j , y), (3.13)

which together with (3.8) and (3.12) yields

B−(x, y) = −Φ−(x, y)−
∫ x

−∞
B−(x, t)Φ−(t, y)dt

=
Ñ∑
j=1

m̃−j f̃r(iκ̃j , x)f̃r(iκ̃j , y) +
Ñ∑
j=1

m̃−j f̃r(iκ̃j , y)

∫ x

−∞
B−(x, t)f̃r(iκ̃j , t)dt

−
N∑
j=1

m−j f̃r(iκj , x)f̃r(iκj , y)−
N∑
j=1

m−j f̃r(iκj , y)

∫ x

−∞
B−(x, t)f̃r(iκj , t)dt
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=

Ñ∑
j=1

m̃−j fr(iκ̃j , x)f̃r(iκ̃j , y)−
N∑
j=1

m−j fr(iκj , x)f̃r(iκj , y). (3.14)

It can be checked from [12, Theorem 4.15(b)] that the solution B(x, y) of bound-
ary value problem (3.10), (3.11) is a continuous function on Ω = {(x, y) ∈ R2 :
y ≤ x}. By (3.11) and (3.14), we have for x ∈ R that

Ñ∑
j=1

m̃−j fr(iκ̃j , x)f̃r(iκ̃j , x)−
N∑
j=1

m−j fr(iκj , x)f̃r(iκj , x) =
1

2

∫ x

−∞
[V (t)− Ṽ (t)]dt,

which together with the condition V (x) = C = Ṽ (x) for x ∈ [a0, b0] yields that
for all x ∈ [a0, b0]

Ñ∑
j=1

m̃−j fr(iκ̃j , x)f̃r(iκ̃j , x)−
N∑
j=1

m−j fr(iκj , x)f̃r(iκj , x)

=
1

2

∫ x

−∞
[V (t)− Ṽ (t)]dt =

1

2

∫ a0

−∞
[Ṽ (t)− V (t)]dt =: C ′. (3.15)

Differentiating the identity (3.15) with respect to x, we infer for x ∈ [a0, b0] that

Ñ∑
j=1

m̃−j (frf̃r)
′(iκ̃j , x)−

N∑
j=1

m−j (frf̃r)
′(iκj , x) = 0. (3.16)

Differentiating the identity (3.15) twice with respect to x, basing on the condition
V (x) = C = Ṽ (x) a.e. for x ∈ [a0, b0] and the equation

(frf̃r)
′′(k, x) = 2(C − k2)(frf̃r)(k, x) + 2(f ′rf̃

′
r)(k, x) a.e. on [a0, b0], (3.17)

we derive from (3.15) that

Ñ∑
j=1

m̃−j [κ̃2j (frf̃r) + (f ′rf̃
′
r)](iκ̃j , x)−

N∑
j=1

m−j [κ2j (frf̃r) + (f ′rf̃
′
r)](iκj , x)

= −C

 Ñ∑
j=1

m̃−j Ṽ (x)(frf̃r)(iκ̃j , x)−
N∑
j=1

m−j (frf̃r)(iκj , x)


= −CC ′ a.e. on [a0, b0].

Differentiating again equality (3.15) with respect to x for the third time, using
the condition V (x) = C = Ṽ (x) a.e. for x ∈ [a0, b0] and the fact that

(f ′rf̃
′
r)
′(k, x) = (C − k2)(frf̃r)′(k, x), a.e. on [a0, b0], (3.18)

we have from (3.16) that

Ñ∑
j=1

m̃−j κ̃
2
j (frf̃r)

′(iκ̃j , x)−
N∑
j=1

m−j κ
2
j (frf̃r)

′(iκj , x)
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= −C

 Ñ∑
j=1

m̃−j (frf̃r)
′(iκ̃j , x)−

N∑
j=1

m−j (frf̃r)
′(iκj , x)

 = 0. (3.19)

Proceeding by induction, differentiating (3.15) (2l + 1) times with respect to x,
by virtue of the condition V (x) = C = Ṽ (x) a.e. for x ∈ [a0, b0], and the fact
that (3.17), (3.18) are analogous to (3.16) and (3.19), we find that (3.6) holds.
The proof is completed.

Basing on the above lemmas, we are now in a position to give the proof of
Theorem 2.1.

Proof of Theorem 2.1. According to the hypothesis of Theorem 2.1, for two
operators H and H̃, we have that L(k) = L̃(k), R(k) = R̃(k) for k ∈ R, V (x) =
Ṽ (x) for x ∈ [a, b], V (x) = C = Ṽ (x) for x ∈ [a0, b0] ⊂ [a, b], x′j = x̃′j ∈ [a, b]

with 2 ≤ j ≤ N , and
∫ a
−∞ V (t)dt =

∫ a
−∞ Ṽ (t)dt (or

∫∞
b V (t)dt =

∫∞
b Ṽ (t)dt).

Moreover, from Lemma 3.3 we also have that (3.6) and (3.7) hold. Our purpose
here is to prove V = Ṽ a.e. on R.

Step 1. We show that N = Ñ and κj = κ̃j for j = 1, . . . , N by virtue of

V (x) = C = Ṽ (x) for x ∈ [a0, b0], L(k) = L̃(k) and R(k) = R̃(k) for k ∈ R. We
assume, contrary to what we want to show, that N > Ñ.

It follows from (3.6) and (3.7) that for any non-zero real constant c and x ∈
[a0, b0],

N∑
j=1

(κ2j )
l[m−j (frf̃r)+cm+

j (flf̃l)]
′(iκj , x) =

Ñ∑
j=1

(κ̃2j )
l[m̃−j (frf̃r)+cm̃+

j (flf̃l)]
′(iκ̃j , x).

Note that for each bound-state energy −κ2j , the Jost solutions fl(iκj , x) and
fr(iκj , x) become linearly dependent, i.e., there exists a nonzero real constant
dj such that fl(iκj , x) = djfr(iκj , x). Analogous results are also valid for the

operator H̃. Thus the above equation deduces

N∑
j=1

(κ2j )
l[fr(m

−
j f̃r + cm+

j dj f̃l)]
′(iκj , x) =

Ñ∑
j=1

(κ̃2j )
l[f̃r(m̃

−
j fr + cm̃+

j d̃jfl)]
′(iκ̃j , x).

(3.20)
Denote

aj(x) = [fr(m
−
j f̃r + cm+

j dj f̃l)]
′(iκj , x) (3.21)

and
ãj(x) = [f̃r(m̃

−
j fr + cm̃+

j d̃jfl)]
′(iκ̃j , x). (3.22)

Here fr(iκj , x), f̃r(iκj , x) and f̃l(iκj , x) are three nontrivial solutions of the equa-
tion y′′(iκj , x) = (C + κ2j )y(iκj , x) for x ∈ [a0, b0]. Similar conclusions are

also valid for the functions f̃r(iκ̃j , x), fr(iκ̃j , x) and fl(iκ̃j , x). If κj 6= κ̃j , then

f̃r(iκj , x) and f̃l(iκj , x) (resp. fr(iκ̃j , x) and fl(iκ̃j , x)) are linearly independent.
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We have from Lemma 3.1(i) that aj(x) and ãj(x) have at most finitely many

zeros on [a0, b0]. If κj = κ̃j , then f̃r(iκj , x) and f̃l(iκj , x) (resp. fr(iκ̃j , x) and
fl(iκ̃j , x)) are linearly dependent, which means aj(x) and ãj(x) defined by (3.21)
and (3.22) can be rewritten as

aj(x) = (m−j +cm+
j dj d̃j)[frf̃r]

′(iκj , x) and ãj(x) = (m̃−j +cm̃+
j dj d̃j)[frf̃r]

′(iκj , x).

We have from Lemma 3.1(ii) that either aj(x) ≡ 0 ≡ ãj(x) for all x ∈ [a0, b0], or
aj(x) and ãj(x) have at most finitely many zeros on [a0, b0]. Hence there are two
cases to be considered.

Case I: If there exists none j such that a(x) ≡ 0 ≡ ã(x) for all x ∈ [a0, b0],
then (3.20) deduces that

N∑
j=1

(κ2j )
laj(x) =

Ñ∑
j=1

(κ̃2j )
lãj(x). (3.23)

Here aj(x) and ãj(x) have at most finitely many zeros on [a0, b0], which means
there exists a common non-zero real constant c and x0 ∈ [a0, b0] such that

aj(x0) 6= 0, j = 1, . . . , N, and ãj(x0) 6= 0, j = 1, . . . , Ñ . (3.24)

Notice that the Jost solution fr(k, x) of (2.1) satisfies the reality condition
fr(k, x) = fr(−k, x) for Imk ≥ 0 (see, for example, [7, p. 130]). This gives that
for all k = iκj and k = iκ̃j , the functions fr(k, x), fl(k, x), f̃r(k, x) and f̃l(k, x)
are all real-valued. Denote the vector A by A = (a1(x0), . . . , aN (x0))

T ∈ RN and
the Vandermonde matrix associated with {κ2j}Nj=1 by V

(N+Ñ)×N [κ2j ]
N
j=1. Similar

notations can also be introduced for {κ̃2j}Ñj=1 corresponding to the Vandermonde

matrix V
(N+Ñ)×N [κ̃2j ]

N
j=1 and the vector Ã with Ã = (ã1(x0), . . . , ãÑ (x0))

T ∈ RÑ .

Then, by (3.23) and M = N + Ñ , we have

VM×N [κ2j ]
N
j=1A = V

M×Ñ [κ̃2j ]
Ñ
j=1Ã. (3.25)

Applying Lemma 3.2 to the above equation, we conclude that

κj = κ̃j , aj(x0) = ãj(x0) for j = 1, . . . , Ñ

and
aj(x0) = 0 for j = Ñ + 1, . . . , N. (3.26)

Thus the contradiction follows from (3.24) and (3.26), therefore N = Ñ and
further κj = κ̃j for j = 1, . . . , N .

Case II: If there exists some j (for simplicity, we suppose there exists only
one, denoted as j0), such that aj0(x) ≡ 0 ≡ ãj0(x) for all x ∈ [a0, b0], then (3.20)
deduces that ∑

j=1,N,j 6=j0

(κ2j )
laj(x) =

∑
j=1,Ñ ,j 6=j0

(κ̃2j )
lãj(x). (3.27)
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It should be noted that this would happen only if κj0 = κ̃j0 . Here aj(x) and ãj(x)
have at most finitely many zeros on [a0, b0], which means there exists a common
non-zero real constant c and x0 ∈ [a0, b0] such that (3.24) also valid for each j
with j 6= j0. Similarly to (3.25), from (3.27) we have that

VM×N [κ2j ]
N
j=1,j 6=j0A = V

M×Ñ [κ̃2j ]
Ñ
j=1,j 6=j0Ã. (3.28)

Applying Lemma 3.2 to the above equation, we will also have a contradiction.
Therefore, N = Ñ and κj = κ̃j for j = 1, . . . , N .

Step 2. We show m−j = m̃−j for j = 1, . . . , N by virtue of L(k) = L̃(k)

for k ∈ R, V (x) = Ṽ (x) for x ∈ [a, b], x′j = x̃′j ∈ [a, b] with 2 ≤ j ≤ N, and∫ a
−∞ V (t)dt =

∫ a
−∞ Ṽ (t)dt. The case for m+

j = m̃+
j can be treated in a similar

way.

Once N = Ñ and κj = κ̃j for j = 1, . . . , N , it follows from (3.6) that

N∑
j=1

(κ2j )
l(m−j − m̃

−
j )(frf̃r)

′(iκj , x) = 0 (3.29)

for x ∈ [a0, b0] and l = 0, 1, . . . , N − 1, which implies that

(m−j − m̃
−
j )(frf̃r)

′(iκj , x) = 0, x ∈ [a0, b0], j = 1, . . . , N. (3.30)

In terms of V (x) = Ṽ (x) for a.e. x ∈ [a, b], the functions fr(iκj , x) and f̃r(iκj , x)
are both solutions of the equation −y′′(k, x) + V (x)y(k, x) = −κ2jy(k, x) for x ∈
[a, b], further the condition x′j = x̃′j ∈ [a, b] with j = 2, . . . , N deduces that the

functions fr(iκj , x) and f̃r(iκj , x) satisfy the same initial condition y(iκj , x
′
j) = 0.

Hence, fr(iκj , x) and f̃r(iκj , x) are linearly dependent for x ∈ [a0, b0], i.e., there
exists a non-zero real constant cj such that

f̃r(iκj , x) = cjfr(iκj , x), for x ∈ [a0, b0], j = 2, . . . , N.

Since fr(iκj , x) is the eigenfunction of equation (2.1), which is not constant and
has at most one zero on [a0, b0], f

′
r(iκj , x) has at most finitely many zeros on

[a0, b0] by virtue of Rolle mean value theorem [19]. It gives that (frf̃r)
′(iκj , x) =

2cj(frf
′
r)(iκj , x) has only a finite number of zeros on [a0, b0], which means there

exists a common x′0 ∈ [a0, b0] such that

(frf̃r)
′(iκj , x

′
0) 6= 0 for j = 2, . . . , N,

which together with (3.30) gives that

m−j = m̃−j for j = 2, . . . , N. (3.31)

On the other hand, by means of L(k) = L̃(k) for k ∈ R,
∫ a
−∞ V (t)dt =

∫ a
−∞ Ṽ (t)dt

and V (x) = Ṽ (x) for x ∈ [a, b], we have from (3.15) and N = Ñ , κj = κ̃j for j =
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1, . . . , N that

N∑
j=1

(m̃−j −m
−
j )(frf̃r)(iκj , x) = 0, x ∈ [a, b], (3.32)

which together with (3.31) deduces that

(m̃−1 −m
−
1 )(frf̃r)(iκ1, x) = 0,

this means
m̃−1 = m−1 . (3.33)

In all, we have L(k) = L̃(k) for k ∈ R, N = Ñ and κj = κ̃j ,m
−
j = m̃−j for j =

1, . . . , N. Thus, by Marchenko’s uniqueness theorem [15], we get V = Ṽ a.e. on
R. The proof is completed.

Basing on the proof of Theorem 2.1, if all the bound-state energies and the
reflection coefficient L(k) for k ∈ R are given, then the knowledge of the potential
on a finite interval will give N algebraic equations associated with the unspecified
norming constants (see (3.29) and (3.30)). We have used the nodal points x′j ∈
[a, b] with j = 2, . . . , N and the value

∫ a
−∞ V (t)dt to determine uniquely the

norming constants m−j with j = 1, . . . , N. Thus the proofs of Theorems 2.2 and
2.4 follow that of Step 2 of Theorem 2.1, and we will give the sketch.

In virtue of (3.29) and (3.32), we give the proof of Theorem 2.2.

Proof of Theorem 2.2. For the sake of simplicity, we shall consider the unique-
ness only for the left reflection coefficient L(k), the case for R(k) can be treated in
a similar way. According to the hypothesis of Theorem 2.2, for two operators H
and H̃, since L(k) = L̃(k) for k ∈ R and V (x) = C = Ṽ (x) for a.e. x ∈ [a0, b0], it
follows from Lemma 3.3 that (3.6) holds, by virtue of the fact {κj}Nj=1 = {κ̃j}Nj=1,
we have (3.29) and further (3.30) is valid. Then we derive from the condition
x′j = x̃′j ∈ [a, b] with j /∈ {ls}ns=1 ∪ {1} that

m−j = m̃−j for j /∈ {ls}ns=1 ∪ {1}.

We further get m̃−1 = m−1 for the same reason of (3.33). Thus, the proof is
completed.

In virtue of (3.32), we give the proof of Theorem 2.4.

Proof of Theorem 2.4. According to the hypothesis of Theorem 2.4, for two
operators H and H̃, since L(k) = L̃(k) for k ∈ R and V (x) = Ṽ (x) for x ∈ [a, b],∫ a
−∞ V (t)dt =

∫ a
−∞ Ṽ (t)dt, and {κj}Nj=1 = {κ̃j}Nj=1, we have that (3.32) holds. It

follows from the condition {m−j }Nj=1,j 6=j0
= {m̃−j }Nj=1,j 6=j0

that

(m̃−j0 −m
−
j0

)(frf̃r)(iκj0 , x) = 0, x ∈ [a, b],

which means m−j0 = m̃−j0 , and thus the proof is completed.
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Оберненi задачi розсiювання з потенцiалом,
заданим на внутрiшньому пiдiнтервалi

Yongxia Guo and Guangsheng Wei

Розглянуто обернену задачу для одновимiрного оператора Шредiнге-
ра на прямiй у випадку, коли потенцiал є дiйсно значним, iнтегрованим
та має скiнчений перший момент. Показано, що цей потенцiал на прямiй
однозначно визначений змiшаними даними розсiювання, якi мiстять ма-
трицю розсiювання, заданий на скiнченому iнтервалi потенцiал та одну
вузлову точку на заданому iнтервалi для кожної власної функцiї.

Ключовi слова: рiвняння Шредiнгера, обернена задача розсiювання,
вiдновлення потенцiалу за частковими даними.
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