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In the paper, translation-invariant Gibbs measures for the Blum–Kapel
model on a Cayley tree of order k are considered. An approximate criti-
cal temperature Tcr is found such that for T ≥ Tcr there exists a unique
translation-invariant Gibbs measure and for 0 < T < Tcr there are exactly
three translation-invariant Gibbs measures. In addition, the problem of
(not) extremality for the unique Gibbs measure is studied.
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1. Introduction

The Gibbs measure is a fundamental law determining the probability of a
microscopic state of a given physical system and it plays an important role in
determining the existence of a phase transition of a physical system, since each
Gibbs measure is associated with one phase of the physical system, and if a Gibbs
measure is nonunique, then it is said that there is a phase transition. It is well
known that the set of all limit Gibbs measures forms a nonempty convex compact
subset of the set of all probability measures and each point (i.e., Gibbs measure)
of this convex set can be uniquely expanded to its extreme points. Therefore, it
is interesting to describe all extreme points of this convex set, i.e., the extreme
Gibbs measures (see [4, 13,16]).

Many papers are devoted to the study of limit Gibbs measures on a Cayley
tree for such models of statistical physics as Ising model, Potts model, HC model
and SOS model (see, for example, [3, 7–10, 15]). In particular, in [10], the set of
translation-invariant Gibbs measures for the ferromagnetic q-state Potts model
was fully described and it was proved that the number of translation-invariant
measures can be up to 2q−1, and in [9], the extremality problem was studied for
these measures. In [15], Gibbs measures for three state HC models were studied
on a Cayley tree of order k ≥ 1 and the nonuniqueness of the translation-invariant
Gibbs measure was proved. Moreover, the areas where the measures are (not)
extreme are given. In the monograph [14], the results on limit Gibbs measures
can be found in more detail.
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This paper is devoted to the study of the Blum–Kapel model which has not yet
been studied on a Cayley tree. This is a two-dimensional spin system, where spin
variables take values from the set: Φ = {−1, 0,+1}. It was originally introduced
for studying He3–He4 phase transition (see [1]). We can consider this model as
the system of a particle with a spin. The value σ(x) = 0 of the spin on the lattice
vertex (or on the tree node) x corresponds to the absence of particles (vacancy)
and the values σ(x) = +1,−1, to the presence of a particle with spin +1,−1 on
the vertex x, respectively (see [1, 5, 17]).

This paper is organized as follows. In Section 2, we present the basic def-
initions and known facts. In Section 3, we prove a theorem that ensures the
condition of consistency of a measure. In Section 4, an approximate critical
temperature Tcr is found such that for T ≥ Tcr there exists a unique translation-
invariant Gibbs measure and there are exactly three translation-invariant Gibbs
measures for the considered model for 0 < T < Tcr. In Section 5, the sets where
the existing single measure for T > 0 is (not) extremal are given.

2. Preliminary information

A Cayley tree Γk = (V,L) of order k ≥ 1 is an infinite tree, i.e., a graph
without cycles such that each vertex has precisely k + 1 edges, where V is the
set of vertices of the graph Γk, L is the set of its edges. Let i be an incidence
function associating each edge l ∈ L to its endpoints x, y ∈ V . If i(l) = {x, y},
then x and y are called the nearest neighbors of a vertex and can be written as
〈x, y〉. The distance d(x, y), x, y ∈ V on the Cayley tree is defined as

d(x, y) = min{d | ∃ x = x0, x1, . . . , xd−1, xd = y ∈ V 〈x0, x1〉, . . . , 〈xd−1, xd〉}.

We consider a model in which spin variables take values from the set Φ =
{−1, 0,+1}. We then define a configuration σ on V as a function x ∈ V →
σ(x) ∈ Φ. The set of all configurations coincides with Ω = ΦV . Let A ⊂ V . We
denote the space of configurations defined on a set A by ΩA.

The Hamiltonian of the Blum–Kapel model is given by the formula

H(σ) = −J
∑

〈x,y〉,x,y∈V ;

σ(x)σ(y),

where J > 0.
For a fixed x0 ∈ V , we write x < y if a path from x0 to y runs through x.
We denote

Wn =
{
x ∈ V | d(x0, x) = n

}
, Vn =

{
x ∈ V | d(x0, x) ≤ n

}
.

A vertex y is called a “child” of a vertex x if x < y and d(x, y) = 1.
We let S(x) denote the set of “children” of a vertex x ∈ V .
Let h : x 7→ hx = (h−1,x, h0,x, h+1,x) be a vector-valued function on x ∈ V \

{x0}. We consider the probability measure µ(n) on ΩVn ,

µ(n)(σn) = Z−1
n exp

{
−βH(σn) +

∑
x∈Wn

hσ(x),x

}
. (2.1)
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Here σn ∈ ΩVn , and Zn is a normalization factor,

Zn =
∑

σn∈ΩVn

exp

{
−βH(σn) +

∑
x∈Wn

hσ(x),x

}
,

where hσ,x ∈ R.
The probability measure µ(n) is said to be consistent if for all n ≥ 1 and any

σn−1 ∈ ΩVn−1 : ∑
σ(n)

µ(n)(σn−1, σ
(n)) = µ(n−1)(σn−1). (2.2)

In this case, there is a unique measure µ on ΩV such that

µ({σ|Vn = σn}) = µ(n)(σn)

for all n ≥ 1 and any σn ∈ ΩVn .

3. The system of functional equations

A condition for hi,x ensuring the consistency of the measures µ(n) is formulated
in the next theorem.

Theorem 3.1. Let k ≥ 2. The sequence of probabilistic measures
µ(n)(σn), n = 1, 2, . . . , defined by (2.1) is consistent if and only if the equalities

z+1,x =
∏

y∈S(x)

λz+1,y + 1
λz−1,y + 1

z+1,y + z−1,y + 1
,

z−1,x =
∏

y∈S(x)

1
λz+1,y + λz−1,y + 1

z+1,y + z−1,y + 1
,

(3.1)

where λ = exp{Jβ}, β = 1/T , zi,x = exp(hi,x − h0,x), i = +1,−1, hold for any
x ∈ V .

Proof. Necessity. By the consistency condition (2.2), we get

Zn−1

Zn

∑
ωn∈ΩWn

∏
x∈Wn−1

∏
y∈S(x)

exp
(
Jβσn−1(x)ωn(y) + hωn(y),y

)
=

∏
x∈Wn−1

exp
(
hσn−1(x),x

)
, (3.2)

where σ(x) ∈ Φ. Fix x ∈ Wn−1 and consider three configurations σn−1 = σn−1,
σn−1 = σ̃n−1 and σn−1 = σ̂n−1 on Wn−1 which coincide on Wn−1 \ {x}, and
rewrite now equality (3.2) for σn−1(x) = −1, σ̃n−1(x) = 0 and σ̂n−1(x) = 1.
Thus we obtain

exp (h+1,x − h0,x) =
∏

y∈S(x)

∑
ωn(y)∈Φ exp{Jβωn(y) + hωn(y),y}∑

ωn(y)∈Φ exp{hωn(y),y}
,

exp (h−1,x − h0,x) =
∏

y∈S(x)

∑
ωn(y)∈Φ exp{−Jβωn(y) + hωn(y),y}∑

ωn(y)∈Φ exp{hωn(y),y}
.
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Consequently,

exp (h+1,x − h0,x)

=
∏

y∈S(x)

exp{Jβ} exp{h+1,y − h0,y}+ exp{−Jβ} exp{h−1,y − h0,y}+ 1

exp{h+1,y − h0,y}+ exp{h−1,y − h0,y}+ 1
,

exp (h−1,x − h0,x)

=
∏

y∈S(x)

exp{−Jβ} exp{h+1,y − h0,y}+ exp{Jβ} exp{h−1,y − h0,y}+ 1

exp{h+1,y − h0,y}+ exp{h−1,y − h0,y}+ 1
.

Hence we can get (3.1).

Sufficiency. Suppose that (3.1) holds. It is equivalent to the representations∏
y∈S(x)

∑
u∈{−1,0,+1}

exp(Jβtu+ hu,y) = a(x) exp(ht,x), t = −1, 0,+1, (3.3)

for some function a(x) > 0, x ∈ V . For l.h.s. of (2.2), we have

∑
σ(n)

µ(n)(σn−1, σ
(n)) =

1

Zn
exp(−βH(σn−1))

×
∏

x∈Wn−1

∏
y∈S(x)

∑
u∈{−1,0,+1}

exp(Jβσn−1(x)u+ hu,y). (3.4)

Taking (3.3) into account and denoting

An(x) =
∏

x∈Wn−1

a(x),

for l.h.s. of (3.3) from (3.4), we get

∏
y∈S(x)

∑
u∈{−1,0,+1}

exp(Jβtu+ hu,y)

=
An−1

Zn
exp(−βH(σn−1))

∏
x∈Wn−1

exp(hσn−1(x),x). (3.5)

Since µ(n), n ≥ 1 is a probabilistic measure, then the following equation is true:∑
σn−1∈ΩVn−1

∑
ωn∈ΩWn

µ(n)(σn−1, ωn) = 1.

Consequently, from (3.5) we obtain Zn−1An−1 = Zn and the validity of (2.2).
The theorem is proved.
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4. Translation-invariant Gibbs measures

Translation-invariant Gibbs measures correspond to solutions (3.1) with zi,x =
zi > 0 for all x ∈ V and i = −1,+1. We introduce the notation z+1 = z1, z−1 =
z2. Then (3.1) has the form

z1 =

(
λz1 + 1

λz2 + 1

z1 + z2 + 1

)k
,

z2 =

(
1
λz1 + λz2 + 1

z1 + z2 + 1

)k
.

(4.1)

In system (4.1) we subtract the second equation from the first one to have

(z1 − z2)

[
1−

(λ− 1
λ)((λz1 + 1

λz2 + 1)k−1 + · · ·+ ( 1
λz1 + λz2 + 1)k−1)

(z1 + z2 + 1)k

]
= 0.

(4.2)
Hence, z1 = z2 or

(z1 + z2 + 1)k =

(
λ− 1

λ

)[(
λz1 +

1

λ
z2 + 1

)k−1

+ · · ·+
(

1

λ
z1 + λz2 + 1

)k−1
]
.

We consider the case z1 = z2 = z. Here, from (4.1), we obtain

z =

(
(λ+ 1

λ)z + 1

2z + 1

)k
. (4.3)

For the solutions of the last equation the next proposition holds.

Proposition 4.1. If z is the solution of equation (4.3), then

1 ≤ z <

(
λ+ 1

λ

2

)k
and z = 1 for λ = 1.

The proof of Proposition 4.1 is obtained directly from equation (4.3).

Proposition 4.2. For k ≥ 2 and for any values λ > 0 equation (4.3) has a
unique positive solution.

Proof. The proof will be carried out in three steps.
Step 1. Denoting k

√
z = x, we rewrite equation (4.3) in the form

ϕ(x) = 2xk+1 − axk + x− 1 = 0, (4.4)

where a = λ+ 1
λ ≥ 2. Then the inequality from Proposition 1 has the form 1 ≤

x < a
2 .
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If a = 2 (i.e., λ = 1), then equation (4.4) (equation (4.3)) has a unique
solution x = 1 (z = 1). Therefore we consider the case a > 2 (λ 6= 1).

By Proposition 4.1, it is clear that 1 ≤ x < a
2 . Notice that ϕ(1) = 2− a < 0

and ϕ(a2 ) = 1 > 0, i.e., equation (4.4) has at least one positive solution for 1 ≤
x < a

2 . Moreover, since there are three sign changes in the polynomial ϕ(x) =
2xk+1−axk +x− 1, it follows from the known Descartes theorem on the number
of positive roots of a polynomial [12, Corollary 1, p. 39] that equation (4.4) has
at most three positive solutions.

Step 2. In the second step of the proof, we use the Jacobi method for
estimating the number of roots of a polynomial between α and β [12, Remark,
p. 39]. To do this, we make a substitution

y =
x− 1
a
2 − x

i.e., x =
1 + a

2y

1 + y
,

and consider the polynomial

(1 + y)k+1ϕ

(
1 + a

2y

1 + y

)
= (a− 2)

[
y

2
(y + 1)k −

(a
2
y + 1

)k]
= (a− 2)

[
1

2
yk+1 +

(
1

2
C1
k −

ak

2k

)
yk +

(
1

2
C2
k − C1

k

ak−1

2k−1

)
yk−1 + . . .

+

(
1

2
− Ck−1

k

a

2

)
y − 1

]
= (a− 2)

(
1

2
yk+1 + b0y

k + b1y
k−1 + · · ·+ bk−1y + bk

)
= (a− 2)ψ(y).

Here

bi =
1

2
Ci+1
k − Cik

(a
2

)k−i
, i = 0, 1, 2, . . . , k − 1, bk = −1.

By the Jacobi method, the number of positive roots of the polynomial ψ(y) is
the number of positive roots of the polynomial ϕ(x) for

[
1, a2
)
.

We note that if bi < 0 for all i = 1, 2, . . . , k − 1 (bk = −1 < 0), then indepen-
dently of the sign of b0, by the Descartes theorem, the polynomial ψ(y) has the
unique positive solution. Thus we consider the case i 6= 0.

If bi > 0, then

a < 2 k−i

√
k − i

2(i+ 1)
= t1

and i < k−2
3 = i0, i ∈ {1, 2, . . . , k− 1}. Indeed, after solving the inequality bi > 0

for a, the inequality a < t1 is obtained directly. On the other hand, the inequality
bi > 0 is equivalent to the inequality

1

2
Ci+1
k > Cik

(a
2

)k−i
.

From this inequality, we get

k − i
2(i+ 1)

>
(a

2

)k−i
,
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here the right side is greater than one. Hence we have

i <
k − 2

3
= i0.

Consequently, bi < 0 for any i ≥ i0.
Step 3. In this step we prove that if bi > 0 for 0 6= i < i0, then bi−1 is also

positive. We suppose bi > 0 but bi−1 < 0. If bi > 0, then it is already known that

a < 2 k−i

√
k − i

2(i+ 1)
= t1.

From bi−1 < 0, we have

a > 2
k−i+1

√
k − i+ 1

2i
= t2.

We prove that t1 < t2. Indeed, t1 < t2 is equivalent to the inequality(
k − i

2(i+ 1)

)k−i+1

<

(
k − i+ 1

2i

)k−i
.

Denoting k − i = n, 1 ≤ n < k (since i 6= 0 here n 6= k), we rewrite the last
inequality (

n

2(k − n+ 1)

)n+1

<

(
n+ 1

2(k − n)

)n
. (4.5)

Using mathematical induction, we prove inequality (4.5). For n = 1, we
obtain the inequality 4k2 − k + 1 > 0 which is true for any k. We suppose that
(4.5) holds for n. We prove the inequality(

n+ 1

2(k − n)

)n+2

<

(
n+ 2

2(k − n− 1)

)n+1

.

We transform and estimate the left-hand side of the last inequality(
n+ 1

2(k − n)

)n+2

=

(
n+ 1

2(k − n)

)n+2( n

2(k − n+ 1)

)n+1(2(k − n+ 1)

n

)n+1

=

(
n

2(k − n+ 1)

)n+1( n+ 1

2(k − n)

)n+2(2(k − n+ 1)

n

)n+1

<

(
n+ 1

2(k − n)

)n( n+ 1

2(k − n)

)n+2(2(k − n+ 1)

n

)n+1

=

(
n+ 1

2(k − n)

)n( n+ 1

2(k − n)

)n+2(2(k − n+ 1)

n

)n+1

×
(

n+ 2

2(k − n− 1)

)n+1(2(k − n− 1)

n+ 2

)n+1

=

(
n+ 2

2(k − n− 1)

)n+1( n+ 1

2(k − n)

)2n+2(2(k − n+ 1)2(k − n− 1)

n(n+ 2)

)n+1

.
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Consequently, it is necessary to prove the inequality(
n+ 2

2(k − n− 1)

)n+1( n+ 1

2(k − n)

)2n+2(2(k − n+ 1)2(k − n− 1)

n(n+ 2)

)n+1

<

(
n+ 2

2(k − n− 1)

)n+1

,

which is equivalent to the inequality(
n+ 1

2(k − n)

)2n+2

<

(
n(n+ 2)

4((k − n)2 − 1)

)n+1

.

From the last inequality we obtain i < k+1
2 . Since i < k−2

3 and k−2
3 < k+1

2 , the

inequality i < k+1
2 holds. Hence equation (4.3) has the unique solution for any

values λ > 0 and k ≥ 2. The proposition is proved.

For the case z1 = z2 = z, by Proposition 4.2, we get that system (4.1) has
the unique solution (z∗, z∗) for λ > 0 and k ≥ 2.

The following theorem holds.

Theorem 4.3. Let k = 2. Then for the Blum–Kapel model there is λcr ≈
2.1132163 such that there exists one translation-invariant Gibbs measure µ0 for
0 < λ ≤ λcr and there are exactly three translation-invariant Gibbs measures
µ0, µ1, µ2 for λ > λcr.

Proof. For the case k = 2, from (4.2), we get

(z1 − z2) ·

[
1−

(λ− 1
λ)((λ+ 1

λ)(z1 + z2) + 2)

(z1 + z2 + 1)2

]
= 0.

In the case of z1 = z2, it is already known that there is a unique solution for
any λ > 0.

Let z1 6= z2. Then

(z1 + z2 + 1)2 =

(
λ− 1

λ

)[(
λ+

1

λ

)
(z1 + z2) + 2

]
.

This equation is equivalent to the equation for (z1 + z2):

(z1 + z2)2 −
(
λ2 − 1

λ2
− 2

)
(z1 + z2) + 1− 2

(
λ− 1

λ

)
= 0,

whose solutions have the form

(z1 + z2)1,2 =
λ4 − 2λ2 − 1±

√
D

2λ2
= ϕ1,2(λ),

where
D = (λ+ 1)(λ− 1)2(λ5 + λ4 − 2λ3 + 6λ2 + λ+ 1) ≥ 0
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for any λ > 0.
It is not difficult to show that

ϕ1(λ) =
λ4 − 2λ2 − 1−

√
D

2λ2
< 0

for any λ > 0 and

ϕ2(λ) =
λ4 − 2λ2 − 1 +

√
D

2λ2
> 0

for λ > 1+
√

17
4 ≈ 1.28078.

Thus z1 + z2 = ϕ2(λ). From the system of equations (4.1), we obtain

(z1 + z2)(z1 + z2 + 1)2

=

(
λ2 +

1

λ2

)
(z1 + z2)2 + 2

(
λ+

1

λ

)
(z1 + z2) + 2

(
2−

(
λ2 +

1

λ2

))
z1z2 + 2.

In respect that z1 + z2 = ϕ2(λ), we have the quadratic equation for z1:

2

(
2−

(
λ2 +

1

λ2

))
z2

1 − 2

(
2−

(
λ2 +

1

λ2

))
ϕ2(λ)z1

−
[(
λ2 +

1

λ2

)
ϕ2

2(λ) + 2

(
λ+

1

λ

)
ϕ2(λ)− ϕ2(λ)(ϕ2(λ) + 1)2 + 2

]
= 0. (4.6)

The discriminant of this quadratic equation is

D1 = 22

(
2−

(
λ2 +

1

λ2

))2

ϕ2
2(λ) + 8

(
2−

(
λ2 +

1

λ2

))
×
[(
λ2 +

1

λ2

)
ϕ2

2(λ) + 2

(
λ+

1

λ

)
ϕ2(λ)− ϕ2(λ)(ϕ2(λ) + 1)2 + 2

]
> 0

for λ > λcr ≈ 2.1132163. Then equation (4.6) has two positive solutions for λ >
λcr:

z
(1)
1 (λ) =

1

2
ϕ2(λ) +

√
D1

4
(
λ− 1

λ

)2 , z
(2)
1 (λ) =

1

2
ϕ2(λ)−

√
D1

4
(
λ− 1

λ

)2 .
Cumbersome calculations show that

lim
λ→+∞

z
(1)
1 (λ) = +∞, lim

λ→+∞
z

(2)
1 (λ) = 0,

lim
λ→λcr

z
(1)
1 (λ) = lim

λ→λcr
z

(2)
1 (λ) =

1

2
ϕ2(λcr) ≈ 1.487

and z
(1)
1 > 0, z

(2)
1 > 0 (see Fig. 4.1).

In addition, from the notation z1 + z2 = ϕ2(λ) we have z
(1)
2 = z

(2)
1 , z

(1)
1 =

z
(2)
2 , i.e., the solutions of (4.1) are symmetric: (z1, z2) and (z2, z1).

It is known from Proposition 4.2 that the system of equations (4.1) has the
unique positive solution for k ≥ 2, λ > 0 and z1 = z2 = z∗. In particular, we can
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Fig. 4.1: Graph of the functions z∗(λ) (continuous curve), z1(λ) (shaded curve),
z2(λ) (pointwise curve).

find an explicit form of this solution for k = 2. For this, we consider equation
(4.3) for k = 2:

z =

(
(λ+ 1

λ)z + 1

2z + 1

)2

, (4.7)

which is equivalent to the equation

g(z) = 4z3 + (4− a2)z2 + (1− 2a)z − 1 = 0.

Using the Cardano formula, we find the solution of the last equation:

z∗ =
1

12λ2

 3

√
A+ 6λ4

√
3B

λ
+

C

3

√
A+ 6λ4

√
3B
λ

+ (λ2 − 1)2

 , (4.8)

where

A = λ12 − 6λ10 + 36λ9 − 3λ8 − 36λ7 + 232λ6 − 36λ5 − 3λ4 + 36λ3 − 6λ2 + 1,

B = 4λ10 − 17λ9 + 4λ8 + 188λ7 − 616λ6 + 874λ5 − 616λ4

+ 188λ3 + 4λ2 − 17λ+ 4,

C = λ8 − 4λ6 + 24λ5 − 6λ4 + 24λ3 − 4λ2 + 1.

Thus, for 0 < λ ≤ λcr, there is a unique translation-invariant Gibbs measure µ0,
corresponding to the unique solution (z∗, z∗) of the system of equations (4.1),
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and for λ > λcr there are three translation-invariant Gibbs measures µ0, µ1, µ2,
corresponding to the solutions (z∗, z∗), (z1, z2) and (z2, z1), respectively. The
theorem is proved.

Remark 4.4. Since λ = exp( JT ), where T > 0 is the temperature, then
Tcr = J

lnλcr
and, by Theorem 4.3, for the Blum–Kapel model, there is a unique

translation-invariant Gibbs measure µ0 for T ≥ Tcr, and there are exactly three
translation-invariant Gibbs measures µ0, µ1, µ2 for 0 < T < Tcr.

5. Extremality of measure µ0

In this section, we study the extremality of the measure µ0 corresponding to
the solution (z∗, z∗). To check the extremality of the Gibbs measure, we apply the
arguments of a reconstruction on trees from [2] and the methods from [6,11]. We
consider Markov chain with states {−1, 0, 1} and transition probabilities matrix
P = (Pij),

Pσ(x)σ(y) =
exp{−Jβσ(x)σ(y) + hσ(y)}∑

σ(y)∈{−1,0,+1} exp{−Jβσ(x)σ(y) + hσ(y)}
.

Hence, using z′i,x =
zi,x
z0,x

, i = 1, 2, we get

P−1,−1 =
λ2z′1

λ2z′1 + λ+ z′2
, P−1,0 =

λ

λ2z′1 + λ+ z′2
, P−1,+1 =

z′2
λ2z′1 + λ+ z′2

,

P0,−1 =
z′1

z′1 + 1 + z′2
, P0,0 =

1

z′1 + 1 + z′2
, P0,+1 =

z′2
z′1 + 1 + z′2

,

P+1,−1 =
z′1

z′1 + λ+ λ2z′2
, P+1,0 =

λ

z′1 + λ+ λ2z′2
, P+1,+1 =

λ2z′2
z′1 + λ+ λ2z′2

.

Consequently, (we set z′i = zi in what follows):

P =


λ2z1

λ2z1+λ+z2
λ

λ2z1+λ+z2
z2

λ2z1+λ+z2
z1

z1+1+z2
1

z1+1+z2
z2

z1+1+z2
z1

z1+λ+λ2z2
λ

z1+λ+λ2z2
λ2z2

z1+λ+λ2z2

 .

For the considered solution P, the matrix has the form (z1 = z2 = z) :

P =

 λ2z
λ2z+λ+z

λ
λ2z+λ+z

z
λ2z+λ+z

z
2z+1

1
2z+1

z
2z+1

z
z+λ+λ2z

λ
z+λ+λ2z

λ2z
z+λ+λ2z

 .

5.1. Conditions for non-extremality of measure µ0. It is known that
a sufficient condition (i.e., the Kesten–Stigum condition) for non-extremality of
a Gibbs measure µ corresponding to the matrix P is that kλ2

2 > 1, where λ2 is
the second largest (in absolute value) eigenvalue of P (see [6]).
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We shall find the conditions of non-extremality of the measure corresponding
to the unique solution (z∗, z∗)(z∗ = z). It is clear that the eigenvalues of this
matrix are

s1 =
(λ− 1)2z

((λ2 + 1)z + λ)(2λ+ 1)
, s2 =

(λ2 − 1)z

(λ2 + 1)z + λ
, s3 = 1,

where z is the solution (4.7). We find max{|s1|, |s2|}:

|s1| − |s2| =
(λ− 1)2z

((λ2 + 1)z + λ)(2λ+ 1)
− |λ− 1|(λ+ 1)z

(λ2 + 1)z + λ
.

Let λ > 1, then

|s1| − |s2| =
2(1− λ)(λ2 + λ+ 1)z

((λ2 + 1)z + λ)(2λ+ 1)
< 0.

For λ < 1,

|s1| − |s2| =
2λ(λ− 1)(λ+ 2)z

((λ2 + 1)z + λ)(2λ+ 1)
< 0.

Then for any λ > 0, we have

max{|s1|, |s2|} =| s2 | .

Consequently, s1 <| s2 |< s3 = 1.
Now we check the Kesten–Stigum condition for non-extremality of the mea-

sure µ0: 2s2
2 > 1, i.e.,

2s2
2 − 1 = 2

(
(λ2 − 1)z

(λ2 + 1)z + λ

)2

− 1 > 0,

where z has the form (4.8). Using Maple, one can see that the last inequality
holds for λ ∈ (0, λ1) ∪ (λ2,+∞), where λ1 ≈ 0.336135 and λ2 ≈ 2.975, i.e., the
measure µ0 is non-extremal under this condition (see Fig. 5.1).

Thus, the following theorem holds.

Theorem 5.1. Let k = 2, λ ∈ (0, λ1) ∪ (λ2,+∞), where λ1 ≈ 0.336135 and
λ2 ≈ 2.975. Then, for the Blum–Kapel model, the measure µ0 is non-extremal.

Remark 5.2. We note that T = J
lnλ , where T > 0 is the temperature, and

since T1 = J
lnλ1

< 0, then in the case k = 2 the measure µ0 is non-extremal for
T ∈ (0, T2).

5.2. Conditions for extremality of the measure µ0. If from a Cayley
tree Γk we remove an arbitrary edge 〈x0, x1〉 = l ∈ L, then it is divided into two
components Γkx0 and Γkx1 , each called semi-infinite Cayley tree or Cayley subtree.

Let us first give some necessary definitions from [11]. We consider the finite
complete subtrees T that are the initial points of Cayley tree Γkx0 . The boundary
∂T of the subtree T consists of the neighbors which are on Γkx0 \ T . We identify



Translation-Invariant Gibbs Measures for the Blum–Kapel Model 251

Fig. 5.1: Graph of the function 2s2
2 − 1.

the subgraphs of T with their vertex sets and write E(A) for the edges within
either a subset A or ∂A.

In [11], the key ingredients are the two quantities κ and γ. Both are the prop-
erties of the collection of Gibbs measures {µτT }, where the boundary condition τ
is fixed and T ranges over all initial finite complete subtrees of Γkx0 . For a given
subtree T of Γkx0 and a vertex x ∈ T , we write Tx for the (maximal) subtree of T
rooted at x. When x is not the root of T , let µsTx denote the (finite-volume) Gibbs
measure in which the parent of x has its spin fixed to s and the configuration on
the bottom boundary of Tx (i.e., on ∂Tx \ {parent of x}) is specified by τ .

For two measures µ1 and µ2 on Ω, ‖µ1 − µ2‖x denotes the variation distance
between the projections of µ1 and µ2 onto the spin at x, i.e.,

‖µ1 − µ2‖x =
1

2

∑
i∈{−1,0,+1}

|µ1(σ(x) = i)− µ2(σ(x) = i)|.

Let ηx,s be the configuration η with the spin at x set to s.
Following ( [11]), define

κ ≡ κ(µ) = sup
x∈Γk

max
x,s,s′

∥∥∥µsTx − µs′Tx∥∥∥x,
γ ≡ γ(µ) = sup

A⊂Γk

max
∥∥∥µηy,sA − µη

y,s′

A

∥∥∥
x
,

where the maximum is taken over all boundary conditions η, all sites y ∈ ∂A, all
neighbors x ∈ A of y and all spins s, s′ ∈ {−1, 0,+1}.

It is known that a sufficient condition for extremality of the translation-
invariant Gibbs measure is kκγ < 1 (see [11], Theorem 9.3).
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Note that κ has the particularly simple form

k =
1

2
max

∑
l∈{−1,0,+1}

‖Pil − Pjl‖.

Hence, it is clear that | Pil − Pjl |= 0 for i = j. Using the methods from [11], we
compute (for i 6= j):∑

l∈{−1,0,+1}

‖Pil − Pjl‖

=


((λ+1)(2z+1)+|λ−1|)|λ−1|z

(λ2z+z+λ)(2z+1)
, i = −1, j = 0 or i = 0, j = −1

2|λ2−1|z
λ2z+z+λ

, i = −1, j = +1 or i = +1, j = −1
((λ+1)(2z+1)+|λ−1|)|λ−1|z

(λ2z+z+λ)(2z+1)
, i = 0, j = +1 or i = +1, j = 0

.

We note that

κ =
|λ2 − 1|z
λ2z + z + λ

.

Now, in the same way as in ( [11], p.15), we can find the estimate for γ in the
following form:

γ = max
{∥∥∥µηy,−1

A − µη
y,0

A

∥∥∥
x
,
∥∥∥µηy,−1

A − µη
y,+1

A

∥∥∥
x
,
∥∥∥µηy,0A − µη

y,+1

A

∥∥∥
x

}
,

where∥∥∥µηy,−1

A − µη
y,0

A

∥∥∥
x

=
1

2

∑
s∈{−1,0,+1}

∣∣∣µηy,−1

A (σ(x) = s)− µη
y,0

A (σ(x) = s)
∣∣∣

=
1

2
(|P−1,−1 − P0,−1|+ |P−1,0 − P0,0|+ |P−1,+1 − P0,+1|)

=
1

2

((λ+ 1)(2z + 1) + |λ− 1|)|λ− 1|z
(λ2z + z + λ)(2z + 1)

≤ |λ2 − 1|z
λ2z + z + λ

,∥∥∥µηy,−1

A − µη
y,+1

A

∥∥∥
x

=
1

2

∑
l∈{−1,0,+1}

|P−1,l − P+1,l| =
|λ2 − 1|z
λ2z + z + λ

,

∥∥∥µηy,0A − µη
y,+1

A

∥∥∥
x

=
1

2

∑
l∈{−1,0,+1}

|P0,l − P+1,l|

=
1

2

((λ+ 1)(2z + 1) + |λ− 1|)|λ− 1|z
(λ2z + z + λ)(2z + 1)

≤ |λ2 − 1|z
λ2z + z + λ

.

Consequently,

γ ≤ |λ2 − 1|z
λ2z + z + λ

.

We check the condition 2κγ < 1 for µ0 which is equivalent to the inequality

(λ4 − 6λ2 + 1)z2 − 2λ(λ2 + 1)z − λ2 < 0,
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Fig. 5.2: Graph of the function 2κγ − 1.

where z is defined by (4.8). Using computer analysis, we obtain that the last
inequality holds for λ1 < λ < λ2, where λ1 ≈ 0.336135 and λ2 ≈ 2.975 (see
Fig. 5.2).

Thus the following theorem is true.

Theorem 5.3. Let k = 2. Then for the Blum–Kapel model the measure µ0

is extremal for λ1 < λ < λ2.

Remark 5.4. Since T1 < 0, then it follows from Remark 5.2 and Theorem 5.3
that in the case k = 2 the measure µ0 is extremal for T > T2.

Remark 5.5. To check (not) the extremality of measures µ1, µ2 is very difficult
even with the help of computer analysis. Therefore this problem remains open.

Since the set of all limit Gibbs measures forms a nonempty convex compact
subset of the set of all probability measures ( [4, 13, 16]), then the following
theorem is true.

Theorem 5.6. If k = 2 and λcr < λ < λ2 (i.e., for 0 < T < Tcr and T > T2),
then there are at least two extremal Gibbs measures for the Blum–Kapel model.

Proof. By Theorem 4.3, it is known that if 0 < λ ≤ λcr, then there is the
unique translation-invariant Gibbs measure µ0. By Theorem 5.3, if λ1 < λ < λ2,
then the measure µ0 is extremal. For λ > λcr, we have the measure µ0 and at
least two new measures µ1, µ2 mentioned in Theorem 4.3. If we assume that all
the new measures are not extremal in (λcr, λ2), then only one known extremal
measure µ0 remains. But in this case, the non-extremal measures can not be
decomposed only into the unique measure µ0. Consequently, for λcr < λ < λ2,
at least one of the new measures must be extremal. The theorem is proved.
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Трансляцiйно-iнварiантнi мiри Гiббса для моделi
Блюма–Капеля на деревi Кейлi
Nosir Khatamov and Rustam Khakimov

У данiй роботi розглянуто трансляцiйно-iнварiантнi мiри Гiббса
для моделi Блюма–Капеля на деревi Кейлi порядку k. Знайдено та-
ку приблизну критичну температуру Tcr, що для T ≥ Tcr iснує єди-
на трансляцiйно-iнварiантна мiра Гiббса, а для 0 < T < Tcr є рiвно
три трансляцiйно-iнварiантнi мiри Гiббса. Крiм того, вивчено проблему
(не)екстремальностi для унiкальної мiри Гiббса.

Ключовi слова: дерево Кейлi, конфiгурацiя, модель Блюма–Капеля,
мiра Гiббса, трансляцiйно-iнварiантна мiра, екстремальнiсть мiри.
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