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Translation-Invariant Gibbs Measures for
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In the paper, translation-invariant Gibbs measures for the Blum—Kapel
model on a Cayley tree of order k are considered. An approximate criti-
cal temperature T, is found such that for T > T, there exists a unique
translation-invariant Gibbs measure and for 0 < T' < T, there are exactly
three translation-invariant Gibbs measures. In addition, the problem of
(not) extremality for the unique Gibbs measure is studied.
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1. Introduction

The Gibbs measure is a fundamental law determining the probability of a
microscopic state of a given physical system and it plays an important role in
determining the existence of a phase transition of a physical system, since each
Gibbs measure is associated with one phase of the physical system, and if a Gibbs
measure is nonunique, then it is said that there is a phase transition. It is well
known that the set of all limit Gibbs measures forms a nonempty convex compact
subset of the set of all probability measures and each point (i.e., Gibbs measure)
of this convex set can be uniquely expanded to its extreme points. Therefore, it
is interesting to describe all extreme points of this convex set, i.e., the extreme
Gibbs measures (see [4,13,16]).

Many papers are devoted to the study of limit Gibbs measures on a Cayley
tree for such models of statistical physics as Ising model, Potts model, HC model
and SOS model (see, for example, [3,7-10,15]). In particular, in [10], the set of
translation-invariant Gibbs measures for the ferromagnetic ¢-state Potts model
was fully described and it was proved that the number of translation-invariant
measures can be up to 2¢—1, and in [9], the extremality problem was studied for
these measures. In [15], Gibbs measures for three state HC models were studied
on a Cayley tree of order £ > 1 and the nonuniqueness of the translation-invariant
Gibbs measure was proved. Moreover, the areas where the measures are (not)
extreme are given. In the monograph [14], the results on limit Gibbs measures
can be found in more detail.
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This paper is devoted to the study of the Blum—Kapel model which has not yet
been studied on a Cayley tree. This is a two-dimensional spin system, where spin
variables take values from the set: ® = {—1,0,+1}. It was originally introduced
for studying He?-He* phase transition (see [1]). We can consider this model as
the system of a particle with a spin. The value o(z) = 0 of the spin on the lattice
vertex (or on the tree node) = corresponds to the absence of particles (vacancy)
and the values o(x) = +1, —1, to the presence of a particle with spin +1,—1 on
the vertex x, respectively (see [1,5,17]).

This paper is organized as follows. In Section 2, we present the basic def-
initions and known facts. In Section 3, we prove a theorem that ensures the
condition of consistency of a measure. In Section 4, an approximate critical
temperature T, is found such that for T' > T, there exists a unique translation-
invariant Gibbs measure and there are exactly three translation-invariant Gibbs
measures for the considered model for 0 < T' < T¢,. In Section 5, the sets where
the existing single measure for 7' > 0 is (not) extremal are given.

2. Preliminary information

A Cayley tree I'* = (V, L) of order & > 1 is an infinite tree, i.e., a graph
without cycles such that each vertex has precisely k + 1 edges, where V is the
set of vertices of the graph T'*, L is the set of its edges. Let i be an incidence
function associating each edge I € L to its endpoints z,y € V. If i(l) = {z,y},
then z and y are called the nearest neighbors of a vertex and can be written as
(x,y). The distance d(z,y),z,y € V on the Cayley tree is defined as

d(z,y) =min{d | 3z = zg,x1,...,24-1,24 =y € V (x0o,x1),...,(Tg—1,Tq) }

We consider a model in which spin variables take values from the set ® =
{=1,0,+1}. We then define a configuration o on V as a function z € V —
o(x) € ®. The set of all configurations coincides with Q = ®V. Let A C V. We
denote the space of configurations defined on a set A by 4.

The Hamiltonian of the Blum—Kapel model is given by the formula

H(o)=—J Y ooy,
(o) eV

where J > 0.
For a fixed 2° € V, we write x < y if a path from z° to y runs through z.
We denote

Wn:{we‘/’d(xo,.’r):n}’ Vn:{wev‘d(.’ﬁo,l’)gn}

A vertex y is called a “child” of a vertex x if z < y and d(z,y) = 1.

We let S(z) denote the set of “children” of a vertex x € V.

Let h: x — hy = (h—12,hoz, ht1,2) be a vector-valued function on z € V' \
{2°}. We consider the probability measure p(™ on Qy; ,

M(n)(gn) = anl eXp {_/BH(Un) + Z ho(a:),x} . (2'1)

CCGWn
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Here o0, € Qy;,, and Z,, is a normalization factor,

Lp = Z exp{ ﬁH Un Z ho(:p x}v

EnGQVn zeWy,

where hz, € R.
The probability measure (™ is said to be consistent if for all n > 1 and any
Op—1 € QVn—l:

Zu (on-1,0) = "D (). (2.2)

In this case, there is a unique measure p on €y such that

n{olv, = ou}) = n"(0n)

for all n > 1 and any o, € Qy,,.

3. The system of functional equations

A condition for h; , ensuring the consistency of the measures 1™ is formulated
in the next theorem.

Theorem 3.1. Let £k > 2. The sequence of probabilistic measures
p(o,),n=1,2,..., defined by (2.1) is consistent if and only if the equalities

- H A1y + %Z—I,y +1
1 =
the Zyly +2-1y + 1

)

S
vesto (3.1)
yES x) +17y + Z—l,y + ]. ’
where X = exp{JB}, B =1/T, zj; = exp(hix — hoz), i = +1,—1, hold for any

reV.
Proof. Necessity. By the consistency condition (2.2), we get

Z H H exp (JBon-1(2)wn(y) + hu,(y).4)

Zn wn €Qw,, TEWn_1 yeS(z)
= H exp(h(,n_l(xm), (3.2)
CCEWn—l

where o(z) € ®. Fix x € W,,_1 and consider three configurations 0,1 = o1,
Op—1 = Op—1 and o,_1 = 0p—1 on W,,_1 which coincide on W,,_; \ {z}, and
rewrite now equality (3.2) for o,_1(z) = —1, dp—1(x) = 0 and op—1(x) = 1.
Thus we obtain

2 exp{J Bwn (Y) + hey, ()}
exp (hy1,e — hox) = H (y)Z€¢’ 0 ; )y ’
yeS(z) wn (y)€® XPVln (y),y

an exp{—JBwn(y) + hu, ()4}
eXp (hfo — hoyx) = H (y)eq) 5 (y) Yy ]
yeS(x) 2on(y)ed P, (4) 4 )
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Consequently,

exXp (h+1,ac - hO,a})
H exp{JB} exp{hi1y — hoy} +exp{—JB}exp{h_1y —hoy} +1
exp{h+1,y — ho,y} =+ exp{h_lyy — ho,y} +1

I

yeS(z)
exp (h—l,az - hO,a:)

H exp{—JpB}exp{hy1,y — hoy}t +exp{JB}exp{h_1y —hoy}+1
exp{h+17y — h()’y} =+ exp{h_lvy — hoyy} +1 )

y€S(z)

Hence we can get (3.1).
Sufficiency. Suppose that (3.1) holds. It is equivalent to the representations

H Z exp(Jftu + hyy) = a(x) exp(hyy), t=-1,0,+1, (3.3)
yeS(z) ue{-1,0,+1}

for some function a(z) > 0, z € V. For Lh.s. of (2.2), we have

S " (on1,00) = - exp(—3H (o 1))

o(n)

X H H Z exp(JBop—1(x)u + huy). (3.4)

r€EWn—1 yeS(z) ue{-1,0,+1}

Taking (3.3) into account and denoting

zeEW, 1
for Lh.s. of (3.3) from (3.4), we get
H Z exp(JBtu + hyy)
yeS(z) ue{—-1,0,+1}
An—l
= 7 exp(—BH (on-1)) H eXp(hanA(a:),x)' (3.5)

n xEanl

Since p(™,n > 1 is a probabilistic measure, then the following equation is true:

Z Z u(”)(on,l,wn) =1.

on—1€Qy, | wn€w,

Consequently, from (3.5) we obtain Z,_1A4,-1 = Z, and the validity of (2.2).
The theorem is proved. ]
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4. Translation-invariant Gibbs measures

Translation-invariant Gibbs measures correspond to solutions (3.1) with z; , =
z; >0 forall z € V and i = —1,41. We introduce the notation 241 = 21,21 =

zo. Then (3.1) has the form
1 k
Az + %2+ 1
2n=|—"—"—],
! z1+29+1

1 k
x21+ Az +1
pn=2——F""1 .
? 21 +29+1

In system (4.1) we subtract the second equation from the first one to have

(4.1)

A=Az + 3+ D) 4 3z + A+ 1)k1)] 0

(Zl B Z2) [1 B (2’1 + z9 + 1)k

(4.2)
Hence, z; = 25 or

1 1 k—1 1 k—1
(21+22+1)k=<)\—>\> <)\21+)\22+1> +~"+<)\Z1+)\22+1> .

We consider the case z; = z3 = z. Here, from (4.1), we obtain

k
z = (W) : (4.3)

For the solutions of the last equation the next proposition holds.

Proposition 4.1. If Z is the solution of equation (4.3), then
k
A+ 1L
1<z< ( ; *)

The proof of Proposition 4.1 is obtained directly from equation (4.3).

and z=1 for A= 1.

Proposition 4.2. For k > 2 and for any values A > 0 equation (4.3) has a
unique positive solution.

Proof. The proof will be carried out in three steps.
Step 1. Denoting {/z = z, we rewrite equation (4.3) in the form

T :2xk+1—aa:k—l—$—120, 4.4
2

where a = A + % > 2. Then the inequality from Proposition 1 has the form 1 <
r<g.
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If a = 2 (i.e., A = 1), then equation (4.4) (equation (4.3)) has a unique
solution x =1 (2 = 1). Therefore we consider the case a > 2 (A # 1).

By Proposition 4.1, it is clear that 1 < 2 < §. Notice that p(1) =2 —-a <0
and ¢(§) =1 > 0, i.e., equation (4.4) has at least one positive solution for 1 <
r < §. Moreover, since there are three sign changes in the polynomial p(z) =
20k — qak + 2 —1, it follows from the known Descartes theorem on the number
of positive roots of a polynomial [12, Corollary 1, p. 39] that equation (4.4) has
at most three positive solutions.

Step 2. In the second step of the proof, we use the Jacobi method for
estimating the number of roots of a polynomial between o and  [12, Remark,
p. 39]. To do this, we make a substitution

z—1 1+ 3y
y:a 1.e., T = s

and consider the polynomial

SR <11++2yy> =le-2) [‘g(@/ +1)F - (Gu+ 1)k]

1 1 a* 1 ab=t\

1 kila
—|—<2—C’k 2>y—1]

1 _
=(a—2) (Q?Jkﬂ +boy* + o1y by + bk> = (a —2)(y)-

Here

bi:%C,i“—C,i (g)k L i=0,1,2,. k=1, b= —1.
By the Jacobi method, the number of positive roots of the polynomial 1 (y) is
the number of positive roots of the polynomial ¢(z) for [1,%).

We note that if b; < 0 for all i =1,2,...,k—1 (b = —1 < 0), then indepen-
dently of the sign of by, by the Descartes theorem, the polynomial ¢(y) has the
unique positive solution. Thus we consider the case i # 0.

If b; > 0, then
| ok—i
p ) A
@< 20+1)

and i < % =1p,1 € {1,2,...,k—1}. Indeed, after solving the inequality b; > 0
for a, the inequality a < t; is obtained directly. On the other hand, the inequality
b; > 0 is equivalent to the inequality

1 . C saNk—i
+1
SCi >c,g(§) .

From this inequality, we get

2(@?1) o (g)ki
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here the right side is greater than one. Hence we have

Z-<E_Z~
3 "

Consequently, b; < 0 for any 7 > ip.
Step 3. In this step we prove that if b; > 0 for 0 # i < ig, then b;_1 is also
positive. We suppose b; > 0 but b;_1 < 0. If b; > 0, then it is already known that

a <2+

i lk—1+1
a>2" +1#:t2.
21

We prove that ¢; < ta. Indeed, t; < ¢y is equivalent to the inequality

kE—i kf'i+1< k‘*ile k—i
20i + 1) 2

Denoting k —i = n,1 < n < k (since i # 0 here n # k), we rewrite the last

inequality . )
(o) < (o) )

Using mathematical induction, we prove inequality (4.5). For n = 1, we
obtain the inequality 4k? — k 4+ 1 > 0 which is true for any k. We suppose that
(4.5) holds for n. We prove the inequality

( n+1 >”+2<( n+2 )”“
2(k —n) 2(k—n—1) '
We transform and estimate the left-hand side of the last inequality
( n+1 )”*2_( n+1 >"+2( >”+1<2(k—n+1)>"+1
2(k —n) 2(k —n) 2(k —n+1) n
_( n )nH( n+1 )n+2< n—i—l))
2k —n+1) 2(k —
<(n+1 )"(n+1 )"*2(2 n+1)
2(k —n)
_( n+1 >"< n+1 >"+2<2 —n+1>
2(k —n)
< n+2 )nﬂ <2(k—n—1)>n+1
2k —n—1 n+2

() ) ()

From b;,_1 < 0, we have

X
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Consequently, it is necessary to prove the inequality

e I

n4+2 n+1
< -
()
which is equivalent to the inequality

(2&%)+ - (4«: - n+>22)— 1>)n+l |

From the last inequality we obtain i < % Since i < % and % < %, the
inequality i < % holds. Hence equation (4.3) has the unique solution for any
values A > 0 and k > 2. The proposition is proved. O

For the case z; = z9 = z, by Proposition 4.2, we get that system (4.1) has
the unique solution (z*, z*) for A > 0 and k > 2.
The following theorem holds.

Theorem 4.3. Let k = 2. Then for the Blum—Kapel model there is Ao =
2.1132163 such that there exists one translation-invariant Gibbs measure pg for
0 < A < Ao and there are exactly three translation-invariant Gibbs measures

o, f1, p2 for A > Aer.
Proof. For the case k = 2, from (4.2), we get

A=A+ $)(z1 + 22) +2)

=0.
(21 4+ 22+ 1)2

(Zl —22) . [1 —

In the case of z; = 29, it is already known that there is a unique solution for
any A > 0.
Let z1 # zo. Then

(z1+ 20 +1)2 = <>\i) [<A+i) (zl+zQ)+2]

This equation is equivalent to the equation for (z1 + 22):

1 1
(Z1+Z2)2_<)\2_/\2—2) (zl+z2)+1—2<)\—)\> =0,

whose solutions have the form

M —_2)2 - 14+vD
2)\2

(z1+22)12 = = <P1,2()\),

where
D=MA+DA=12N+ X =2X34+6X2+ 1 +1)>0
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for any A > 0.
It is not difficult to show that
XM —222—-1-VD

p1(A) = 52 <0

for any A > 0 and
)\4—2)\2—1+\/5>

2)2 0

Pa(A) =

for A > HY1T ~ 198078,
Thus 21 + z2 = @2(\). From the system of equations (4.1), we obtain

(21 + 22) (21 + 22 + 1)

1 1 1
- ()\2—1—)\2) (21—1—22)24—2()\4—)\) (z1+22)+2(2— ()\2—1—)\2))21224—2.

In respect that z; + 2o = pa(A), we have the quadratic equation for z;:

2 (2— ()\2—1—)\12)) 22 -2 (2— </\2+ ;)) ©a(N\) 21

=4 52) B0+ 2 (34 1) ) = e a0 + 174 2] = 0. (00

The discriminant of this quadratic equation is

Dy =22 <2— ()\2+)\12>>2g0§()\)+8 <2— <A2+ ;))

« [(V + ;) A2 + 2 <)\ + i) 22(0) — oa(N)(92(A) +1)% + 2} >0

for A > A\, ~ 2.1132163. Then equation (4.6) has two positive solutions for A >
Aert

NOPRN VD1 NOPR. ~_ VDi
1 ()‘) = 29020‘) 4(}\_ %)2’ 1 ()‘) 2902()‘) 4( — %)2

Cumbersome calculations show that

lim 2P(\) =400, lim 2P =0,

A—+00 A—+00
. 1 . 2 1
Al_l)I)I\lcr zg )()\) = )\l_lglm z§ )()\) = §<p2(/\cr) ~ 1.487

and 251) > 0, zf) > 0 (see Fig. 4.1).

In addition, from the notation z; + z2 = @2(\) we have zél) = z%z), zil) =
252), i.e., the solutions of (4.1) are symmetric: (21, 22) and (z2, 21).

It is known from Proposition 4.2 that the system of equations (4.1) has the

unique positive solution for £ > 2, A > 0 and z; = 29 = 2*. In particular, we can
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Fig. 4.1: Graph of the functions z*(\) (continuous curve), z;(A) (shaded curve),
z2(\) (pointwise curve).

find an explicit form of this solution for £ = 2. For this, we consider equation

(4.3) for k =2: ,
1 z
- (W) , (4.7)

which is equivalent to the equation
g(z) =422+ (4 —a®)2? + (1 -2a)2—1 =0,

Using the Cardano formula, we find the solution of the last equation:

1 B
= 3A+6A4,/3—+ ¢ + (=12, (4.8)
12)2 PR =
A+6)1,/3E

where

A= X2 610 136107 — 30% — 36A7 + 23206 — 3605 — 3X* + 3603 — 6% + 1,
B =4X0 — 1709 4 408 4+ 188\7 — 616X5 + 874\% — 616)*

+ 1883 +4X\% — 17\ + 4,
C =X\ —4X0 2405 — 6% 4+ 2403 —4N2 4+ 1.

Thus, for 0 < A < Ay, there is a unique translation-invariant Gibbs measure uy,
corresponding to the unique solution (z*,z*) of the system of equations (4.1),
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and for A > A there are three translation-invariant Gibbs measures pg, p1, (2,
corresponding to the solutions (z*,2*), (z1,22) and (zg,21), respectively. The
theorem is proved. O

Remark 4.4. Since A\ = exp(%), where T > 0 is the temperature, then
Ter = ﬁ and, by Theorem 4.3, for the Blum—Kapel model, there is a unique
translation-invariant Gibbs measure ug for T' > T, and there are exactly three
translation-invariant Gibbs measures g, g1, o for 0 < T < Tp,.

5. Extremality of measure pq

In this section, we study the extremality of the measure pg corresponding to
the solution (z*, z*). To check the extremality of the Gibbs measure, we apply the
arguments of a reconstruction on trees from [2] and the methods from [6,11]. We
consider Markov chain with states {—1,0,1} and transition probabilities matrix
P = (F;),

_ exp{—JBo(x)o(y) + hoy }
T S et oa1y XP{—IBI(@)o (y) + hogy }

Pa(a:)

. / _ Zi,z .
Hence, using Zix = o VT 1,2, we get
P A2z A p zh
S e AT Ny A e— T e SV A
N2z + A+ 2 N2z + A+ 2 + N2+ N+ 2
/ /
z 1 z
Py_1=—F—1— Pyo=——"T— Pyj1=—F2—
T 142 RN A AN R A
/ 2.1
z A Az
1 2
P 1=+ Pro=— 57 Pr+1=

21+ A+ N2z 21+ A+ N2z 2+ A+ A2

Consequently, (we set z, = z; in what follows):

A2z A 22
)\2Z1+/\+22 )\221+)\+22 /\221+)\+Z2
21 1 29

P =

z1+1+22 z1+1+22 z1+1+22
A A2z

z1 2
Z1HAMA220 21+ A FA220 ziHAFA22o
For the considered solution P, the matrix has the form (z; = 23 = 2) :

A2z A z
A2z A4z /\QZJEAJrz A2z A4z
z z

P=

2z+1 2z+1 2z+1
z A A2z
A2z 2+ AFA2z2 2 A2z

5.1. Conditions for non-extremality of measure pg. It is known that
a sufficient condition (i.e., the Kesten-Stigum condition) for non-extremality of
a Gibbs measure p corresponding to the matrix P is that kA3 > 1, where )y is
the second largest (in absolute value) eigenvalue of P (see [6]).
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We shall find the conditions of non-extremality of the measure corresponding
to the unique solution (z*,2*)(z* = z). It is clear that the eigenvalues of this

matrix are
(A —1)2%2 (A2 —1)z
51 = ’ $2= o L v $3 = 13
(A2 +1)z4+N)(2XA+1) AN +1)z+ A
where z is the solution (4.7). We find max{|s1|, |s2|}:
(A —1)2z A=A+ 1)z

[s1] = [s2] = (A24+1Dz+ N2 +1) (A24+1)z+A"

Let A > 1, then

21 = AN+ A+ 1)z

2D+

|s1] = [s2] =
(

For A < 1,
AN — 1)(A+2)
|s1] = [s2] =
(21 1)zt NEA T D)

Then for any A > 0, we have

< 0.

max{[si], |s2|} =[ s2 | .

Consequently, s1 <| s2 |< s3 = 1.
Now we check the Kesten—Stigum condition for non-extremality of the mea-
sure fig: 2592 > 1, i.e.,

A2 —1)z 2
2892 —1=2 WDz -1
72 (()\2+1)z+)\> =6

where z has the form (4.8). Using Maple, one can see that the last inequality
holds for A € (0, A1) U (A2, +00), where A\; = 0.336135 and Ao & 2.975, i.e., the
measure /i is non-extremal under this condition (see Fig. 5.1).

Thus, the following theorem holds.

Theorem 5.1. Let k = 2, A € (0, A1) U (A2, +00), where A\; =~ 0.336135 and
Ao & 2.975. Then, for the Blum—Kapel model, the measure pg is non-extremal.

Remark 5.2. We note that T = ﬁ, where T' > 0 is the temperature, and
since 11 = ﬁ < 0, then in the case k = 2 the measure g is non-extremal for
T e (0, TQ).

5.2. Conditions for extremality of the measure pg. If from a Cayley
tree I'* we remove an arbitrary edge (20, 2') =1 € L, then it is divided into two
components F';o and I";l, each called semi-infinite Cayley tree or Cayley subtree.

Let us first give some necessary definitions from [11]. We consider the finite
complete subtrees T that are the initial points of Cayley tree Fio- The boundary

OT of the subtree T consists of the neighbors which are on Fio \ 7. We identify
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-1-

Fig. 5.1: Graph of the function 2s3 — 1.

the subgraphs of 7 with their vertex sets and write E(A) for the edges within
either a subset A or JA.

In [11], the key ingredients are the two quantities k and . Both are the prop-
erties of the collection of Gibbs measures {7}, where the boundary condition 7
is fixed and T ranges over all initial finite complete subtrees of FI;O. For a given
subtree T of F’;O and a vertex z € T, we write 7, for the (maximal) subtree of T
rooted at x. When z is not the root of T, let u5- denote the (finite-volume) Gibbs
measure in which the parent of x has its spin fixed to s and the configuration on
the bottom boundary of 7 (i.e., on 97, \ {parent of x}) is specified by 7.

For two measures p1 and pg on Q, |1 — p2||l. denotes the variation distance
between the projections of p; and po onto the spin at z, i.e.,

1 . .
I = pelle =5 > lm(o(@) =) = pa(o(@) = D).
ie{—1,0,41}

Let n®® be the configuration n with the spin at x set to s.
Following ( [11]), define

= w(n) = sup mas s, — | |
ek 55,8 ® g
.5 y,s’
v =7(p) = sup max HMZ -y
ACTk

where the maximum is taken over all boundary conditions 7, all sites y € 0A, all
neighbors z € A of y and all spins s,s" € {—1,0,+1}.

It is known that a sufficient condition for extremality of the translation-
invariant Gibbs measure is kxky < 1 (see [11], Theorem 9.3).
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Note that x has the particularly simple form

1
k=gmax Y |[Pa— Pyl
le{-1,0,4+1}

Hence, it is clear that | Py — Pj; |= 0 for i = j. Using the methods from [11], we
compute (for ¢ # j):

Z | P — Pyl

le{-1,0,+1}
(DD 24D +A—1DA=1]z - . S
O ) , t=—1,35=00r:=0, j=-1
= i=—1, j=+lori=+1, j=—1.

(OFD 24D +HA-1DIA=1]z - o . o
(AZz+z+X)(22+1) , 1=0,j=+lori=+1,37=0

We note that
A2 — 1]z
K= —H——.
Nz+z4+ A
Now, in the same way as in ( [11], p.15), we can find the estimate for  in the
following form:

y,—1 y,0 y,—1 y,+1 y,0 y,+1
vzmaX{HuZ —wh |l )MZ — Wy ,Hul — Wi }
x €T x
where
y,—1 y,0 1 y,—1 y,0
™ = =5 X T @ =9 —ul @) = )]
se{-1,0,+1}
1
=5 (P11 = Poaf +[P-10 = Pool +[P-1,41 = Po41)
LD+ D+ A=A =1z - N2 — 1]z
2 (AN2z4+z+N)(22+1) T A2z 42+ N
2
=1 gurt|] 1 =1z
Ba Mg =5 Z Py —Pryl= 5—1>
2 {04 1) Nz +z+ A
y,0 y,+1 1
HMZ — 1) =3 >, Ry — Pyl
v le{—~1,0,4+1}
_ O+ DR+ D+ A 1P -1z A2 — 1|z
2 (M2z+2+A)(22+1) TNz 424N
Consequently,
A2 — 1|z

< ——.
7232 +z+ A
We check the condition 2kvy < 1 for pg which is equivalent to the inequality

A —6X2+1)22 —2X(\2+ 1)z — X2 <0,
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Fig. 5.2: Graph of the function 2xy — 1.

where z is defined by (4.8). Using computer analysis, we obtain that the last
inequality holds for A\; < A < A9, where A\; =~ 0.336135 and A2 ~ 2.975 (see
Fig. 5.2).

Thus the following theorem is true.

Theorem 5.3. Let k = 2. Then for the Blum—Kapel model the measure pg
is extremal for A1 < XA < Ao.

Remark 5.4. Since T} < 0, then it follows from Remark 5.2 and Theorem 5.3
that in the case kK = 2 the measure pg is extremal for T' > T5.

Remark 5.5. To check (not) the extremality of measures p1, us is very difficult
even with the help of computer analysis. Therefore this problem remains open.

Since the set of all limit Gibbs measures forms a nonempty convex compact
subset of the set of all probability measures ( [4, 13, 16]), then the following
theorem is true.

Theorem 5.6. Ifk =2 and Aoy < XA < Ao (i.e., for0 <T < Ty and T > T3),
then there are at least two extremal Gibbs measures for the Blum—Kapel model.

Proof. By Theorem 4.3, it is known that if 0 < A < A, then there is the
unique translation-invariant Gibbs measure pg. By Theorem 5.3, if \; < A < Ag,
then the measure pg is extremal. For A > A.., we have the measure pg and at
least two new measures pi1, 2 mentioned in Theorem 4.3. If we assume that all
the new measures are not extremal in (A, A2), then only one known extremal
measure pg remains. But in this case, the non-extremal measures can not be
decomposed only into the unique measure pg. Consequently, for A\, < A < Ag,
at least one of the new measures must be extremal. The theorem is proved. [
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TpancasamiitHo-inBapianTHi mipu I'i60ca ajist mogedi
Baroma—Kamnens na nepesi Keitri

Nosir Khatamov and Rustam Khakimov

Y naniit poboTi PoO3rIAHYTO TpaHCAdIiiHO-iHBapianTHi Mipu ['i60ca
st mozesti Boroma—Kamnest Ha mepesi Keitni mopsinky k. 3Haligeno ta-
Ky HOpUOJM3HY KPUTHIHY TeMueparypy 1., mo ausg 1T > T, icuye enu-
Ha TpaHCHadAmiitHO-iHBapianTHa Mipa ['i66ca, a mia 0 < T < T,. € piBHO
TPpHU TpaHCsIiiHO-iHBapianTHi Mipu ['i66ca. Kpim Toro, BuBdueHo mpobsiemy
(ne)ekcTpemasibHOCTI 7181 yHIKaIBbHO! Mipu ['i66ca.

Kirrouosi ciosa: nepeso Keiuni, koudiryparis, momens baoma—Kaness,
wmipa I['i66ca, Tpancasdmiitno-imBapianTHa Mipa, eKCTPEeMaJIbHICTD MipH.
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