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Singularly Perturbed Spectral Problems in a
Thin Cylinder with Fourier Conditions on its
Bases

Andrey Piatnitski and Volodymyr Rybalko

The paper deals with the bottom of the spectrum of a singularly per-
turbed second order elliptic operator defined in a thin cylinder and having
locally periodic coefficients in the longitudinal direction. We impose a homo-
geneous Neumann boundary condition on the lateral surface of the cylinder
and a generic homogeneous Fourier condition at its bases. We then show
that the asymptotic behavior of the principal eigenpair can be characterized
in terms of the limit one-dimensional problem for the effective Hamilton—
Jacobi equation with the effective boundary conditions. In order to con-
struct boundary layer correctors we study a Steklov type spectral problem
in a semi-infinite cylinder (these results are of independent interest). Un-
der a structure assumption on the effective problem leading to localization
(in certain sense) of eigenfunctions inside the cylinder we prove a two-term
asymptotic formula for the first and higher order eigenvalues.
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1. Introduction

In this work, we consider spectral problems for singularly perturbed second
order elliptic operators defined in a thin cylinder with the Neumann boundary
condition on the lateral surface of the cylinder and the Fourier boundary con-
ditions on its bases. The scaling in the problem is such that these latter parts
of the boundary create boundary layers which affect the overall behavior of the
solutions and therefore require a thorough study.

Previously, spectral problems in a smooth bounded domain for a singularly
perturbed second order elliptic operator with rapidly oscillating locally periodic
coefficients were studied in [11,12], where the case of Dirichlet boundary condition
was studied. The methods used in these works rely essentially on homogenization
techniques for (perturbed) Hamilton—Jacobi type equations with locally periodic
coefficients, see, for instance, [7,8]. The effective boundary condition is the so-
called state constraint boundary condition, more details can be found in [5, 14].
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When studying a similar problem with the Neumann or the Fourier boundary
condition, we face a common in homogenization theory difficulty caused by the
inconsistency of the periodic structure inside a domain with the boundary leading
to very irregular boundary layers (see, e.g., [4]). However, in the case of a thin
cylinder considered in the present work the boundary layers appearing near its
bases can be successfully studied. To this end, we use a factorization argument to
reduce the study of the mentioned boundary layers to the Steklov type spectral
problems in a semi-infinite cylinder. Congenerous problems in half-space type
domains (with periodic conditions instead of the Neumann condition on the lat-
eral surface) were considered in [3] and [4]. The main novelty of the present work
is the comprehensive description of the Steklov type spectral problems in the
semi-infinite cylinder which includes uniqueness/non-uniqueness results in terms
of the so-called effective longitudinal drift, and exhausting results in the case of
non-uniqueness. These results, which are also of independent interest, allow us
to identify effective boundary conditions. Note that the asymptotic analysis of
the problem leads to the dimension reduction, and thus the effective Hamilton—
Jacobi eigenvalue problem is one-dimensional. Due to this dimension reduction
we are able to provide also the two-term asymptotic formulas for eigenvalues.
Namely, under a structure assumption on the effective problem we reduce the
original spectral problems to a form amenable to local asymptotic analysis on
an intermediate scale. We prove the convergence (in norm) of resolvent opera-
tors to the resolvent operator of a one-dimensional harmonic oscillator problem.
The eigenvalues of the latter problem provide the second term in the two-term
asymptotic formulas mentioned above.

We are also to mention works [1,2] close to the subject considered in the
paper. The first work deals with the purely one-dimensional case, the second one
describes an asymptotic behavior of the principal eigenfunction of the problem
adjoint to a convection-diffusion problem in a thin cylinder with the Neumann
condition on the boundary.

The paper is organized as follows. Section 2 describes the problem. In Section
3, we study the principal eigenpair by means of the vanishing viscosity method.
Section 4 is devoted to the construction of boundary layers near the bases of the
cylinder and derivation of effective boundary conditions, it studies the Steklov
type spectral problems in a semi-infinite cylinder. As already mentioned, the
results of this Section might be of independent interest. In Section 5, we establish
the two-term asymptotic formulas for the first and higher order eigenvalues under
a structure assumption on the effective problem.

2. Problem setup

Given L > 0, a smooth bounded domain w € R® ! and a small parameter
e > 0, we consider an elliptic operator L. in the cylinder (0, L) X ew,

0%u

ou
LEU = 52aij(1’17$/5)m + 5bj(l'1,l’/€)% + C(.Il,ﬂ?/é-:)u. (21)
UadiadV) J
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The coefficients a;;, b; and c are fast oscillating locally periodic functions: they
depend on z; (slow variable) and y = = /e (fast variable) being 1-periodic in y;.
Since (2.1) contains the factor €2 in front of the higher order term and ¢ in front
of the first derivatives, L. is a singularly perturbed operator. We impose the
homogeneous Neumann condition on the side boundary of the cylinder,

ou
=0 on (0,L) X edw, 2.2
o 0.1) 2:2)
where 597“ = aij(xl,x/e)%yi is the conormal derivative with v = (v1,...,1y)
a J

being the unit normal vector (outward pointing), and consider the Fourier con-
ditions

0 L+ L
68: +g+(2'/e)u. =0, when z = (z1,2'/¢) € {2} X w, (2.3)
on the bases of the cylinder.
Consider the spectral problem
Lou=Au in (0,L) X ew, u satisfies (2.2) and (2.3). (2.4)

Under some natural conditions (uniform ellipticity of the higher order term and
smoothness of the coefficients) the spectrum of this problem is discrete. We study
he asymptotic behavior of the eigenpairs as ¢ — 0.

The exact conditions imposed on the coefficients of the operator L. are the
following:

aij(1,9), bj(z1,y), c(r1,y) € C3([0, L] x R x @) are 1-periodic
in y; functions, the symmetry a;; = aj;,
and the uniform ellipticity a;;&¢; > ]¢[* > 0(V¢€ € R™\ {0}) holds.  (2.5)

We also suppose that

w is a bounded domain of the class C?, and g+ € C*(@). (2.6)

3. Asymptotic behavior of the first eigenpair

We begin by considering the first eigenvalue A. (with the maximal real part)
of £.. By the Krein—Routman theorem, ). is a simple eigenvalue and A\. €
R, the corresponding eigenfunction u. can be chosen positive. As in the series
of works [11-13], we represent the eigenfunction as u. = e~"</¢ arriving at a
perturbed Hamilton—Jacobi equation

2

_ mij(xl’x/g)aig/; + H(xy,2/e, VW:) = A, in (0,L) X ew, (3.1)
0T

where H(x1,y,p) = aij(x1,y)pip; —bj(x1,y)pj+c(z1,y), subject to the boundary
conditions:
ow oW, L+L

o, 0 on (0,L) X edw, o, g+(2'/e), when xq = —5 7' €ew. (3.2)
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It is not difficult to obtain a priori estimates ensuring that, up to a subsequence,
Ae converges to a finite limit A, and W, (normalized by min W, = 0) converges
uniformly to a function W(z1). Moreover, one establishes (e.g., following the
lines of [11]) that W is a viscosity solution of the equation

H(z1,W)=X 1in (0,L) (3.3)

with the effective Hamiltonian H (1, p1) defined as the unique number such that
the equation

026 . 00
7 I P =
0y:0y; + (V (21, y) au(fUl,y)pl)ayj

+ H(z1,y,p1,0,...,0)00 = H(x1,p1)0 in R xw (3.4)

aij (3717 y)

has a positive solution 6 = 0(y, x1,p1) which is 1-periodic in y; and satisfies the
boundary condition

00

— —vianp1f =0 on R x Ow. (3.5)

v,
Equation (3.3) can be established via the perturbed test functions method [§],
using the test functions of the form ®.(x) = ®(z1) — elogf(z/e, x1,p1) + o(e),
p1 = ®(x1). Constructing the test functions near the bases of the cylinder is
more complicated. For simplicity, we assume that the interval (0, L) contains the
whole number of micro-periods, ¢; i.e., L/e is an integer. We concentrate our
attention on one base 1 = 0, using the same reasonings for the other base x1 =
L. Considering the ansatz

. = B(x1) — elog(v(z/e)0(z/e,x1,p1)) +0(e), p1 =P (21), (3.6)

and freezing the slow variable z; = 0 yields the equation (in the semi-infinite
cylinder)

0%v 0log 6 v
. bj +2a;j——— —2a1;p1 | m— =0 1in (0, 3.7
I Dy ( Iy, aljpl) y; (oo 3D
with the boundary conditions
0
6712 =0 on (0,+00) X dw (3.8)

and
ov dlog

oy, Ovg

The number §_(p1) and the function v are unknown in problem (3.7)—(3.9), and
the solution g_(p;) defines an effective boundary condition at 1 = 0 in problem
(3.3). More precisely, we seek a constant g_(p;) such that problem (3.7)—(3.9)
has a bounded positive solution converging to a positive constant as y; — 4o00.
This is a kind of the Steklov spectral problem studied in detail in Section 4. Some
of its main features are described in the following statement.

+ <9 (y') + anipr + > v=g_(p1)v on {0} x w. (3.9)
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Theorem 3.1. There is a continuous strictly increasing function g* (h) on
[min,, H(0,p1),+00) (which grows not slower than a linear function as h — +00)
such that problem (3.7)—(3.9) has a bounded positive solution that converges to a
positive constant as y1 — +00o if and only if one of the following two conditions

1s fulfilled:

(i) Z2(0,p1) > 0 and g_(p1) = G (F (0, p1)), or

(1) 52(0,p1) <0 and G_(p1) < g=(H(0,p1)).

The similar result holds for z1 = L with some function g% (h).

Now, for a given smooth function ®(z1), we use test functions of the form
(3.6) and (as usual in viscosity solutions theory) consider the local maxima and
minima points of W, — ®. to conclude (passing to the limit ¢ — 0) that

o if W — @ attains its local maximum (in [0, L]) at ;1 = 0, then either

H(0,9(0)) < A or g_(H(0,%'(0))) >0, and —§(0,%'(0)) < 0;

o if W — ® attains its local minimum at 1 = 0, then either H (0, ®'(0)) > A

or g_(H(0,9'(0))) < 0.

Introduce h_ as the unique solution of the equation g_(h_) = 0 if it exists and
set h_ = —oo otherwise. Define h. in a similar way (via the function g* (h)).
Then, using formalism of the viscosity solutions theory, we can write the effective
problem for A and W as equation (3.3) with the boundary conditions in the form
of inequalities (sub- and supersolution property):

—F(xl,wl(l‘l))-f—ﬁi < 0 and ¢gf(x1,W’(x1)) <Oatz| = (L:EL)/Q, (310)
1

and
— H(z1,W'(x1))+he >0at z; = (L£L)/2, (3.11)

both understood in the viscosity solutions sense.

Proposition 3.2. There exists a unique constant A = X (additive eigenvalue)
such that problem (3.3), (3.10), (3.11) has a continuous viscosity solution W.
Moreover, X\ is given by the formula

A = max {hi, max minH(ml,pl)} . (3.12)
z1€[0,L] P1

Proof. First observe that every viscosity solution of (3.3) satisfies the equa-
tion pointwisely almost everywhere, therefore

A > max min H(py,x1). (3.13)
1‘16[0,L] p1

Moreover, W is continuously differentiable everywhere except at the most finite
number of points in (0, L) where W is continuous and one-side limits of derivatives
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exist. It follows, in particular, that H(xz1, W’(x1)) = A at endpoints x; = (L +
L)/2. Show that A > max{h+}. Assume by contradiction that A < max{h4}
and consider, for definiteness, the case when max{h+} = h_. We use the test
function ®(x1) := (p1 + 6)x1, where p; is the maximal solution of the equation
H(0,p1) = A= H(0,W’(0))) and § > 0, to verify the subsolution property at
x1 = 0. This yields H(0,p; + ) < X or H(0,p; + &) > h_, but both inequalities
are broken for sufficiently small §. Thus, A > \.

Now assume that A > A, in particular A\ > h_. Set p; = W/(0). If
g—g(o,pf) > 0, then considering the test function ®(z1) := (p1 — 0)z; with
sufficiently small 6 > 0 we have H(0,®'(0)) < A, so that by (3.11) ®'(0) sat-
isfies H(0,®'(0)) < h_. Actually, A — O(§) < h_ is a contradiction. Thus,
g—g((), W’'(0)) < 0. The similar reasoning yields g—ﬁ(o, W’LI/)) > 0. Ob-
serve also that these inequalities are strict, otherwise A\ = H(z1, W (x1)) =
ming,, H(z1,p1) < A, where 1 = 0 or x; = L. It follows that at some point
¢ € (0,L) we have limg, e o W'(z1) < limg, er0 W/ (z1). But then W(z1) does
not satisfy the equation H(x1, W’(z1)) = X at & (in viscosity sense). O

Next we state the main result describing the asymptotic behavior of the first
eigenpair.

Theorem 3.3. Assume that conditions (2.5), (2.6) are satisfied. Then the
first eigenvalue A converges as € — 0 to X\ given by (3.12). The scaled log
transformations W, = —elogu. of the first eigenfunctions u. (normalized by

maxu. = 1) converge uniformly (up to extracting a subsequence) to a viscosity
solution W (z1) of problem (3.3), (3.10), (3.11).

4. Construction of boundary layers near bases

Consider the following problem in a semi-infinite cylinder: find a number g
and positive bounded function v satisfying

0% ov
ai—— 2 in (0, +00) X w, 41
]8yi8yj J 8yj ( ) ( )
0
OTU + 9y )v=gv on {0} X w, (4.2)
ov
oo, 0 on (0, 4+00) X Ow. (4.3)

We assume that the coefficients a;;(y), b;(y), c(y) € C3(R xw) are 1-periodic in y1,
a;j(y) admit the symmetry a;; = aj; and satisfy the uniform ellipticity condition,
g(y') € C*(w) is a given function. The qualitative features of problem (4.1)—(4.3)
are determined by the sign of the so-called longitudinal drift defined as follows.
For the equation

0? 0

——(a;;0%) — =—(b;6") =0 in (—o0,+00) X W 4.4
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subject to the boundary condition

00* 0 .
o +v; <8yiaij — bj)H =0 on (—o0,+00) X Jw (4.5)
find 1-periodic solution with respect to y;. Since the adjoint problem to (4.4),
(4.5) has only constant solutions, there is the unique solution of (4.4), (4.5)
normalized by

1

— 0*dydy’ = 1. (4.6)
|w‘ (0,1)xw

Then we define the effective longitudinal drift b, by

_ . 0 .
b1 ::/ b10*dy,dy’ / ——(a1;6")dyrdy’. (4.7)
(0,1) xw (0,1)xw 83/3'

Theorem 4.1. There exists g* € R such that

1. forg=g*, problem (4.1)—(4.3) has a positive bounded solution v that stabi-
lizes exponentially fast to a constant v,

2. if by <0, then vs > 0,

3. if by >0, then vy = 0.

In the case of by < 0, the bounded positive solution of (4.1)-(4.3) is unique up to
a positive multiplicative constant. Such a solution does not exist if g # g*.

In the case of by > 0, for any g < G* there is a bounded positive solution of
(4.1)—(4.3) stabilizing exponentially fast to some v > 0. There are no bounded
positive solutions of (4.1)—(4.3) for g > g*.

Proof. Consider the auxiliary spectral problem: find the first eigenvalue A =
A(N) (corresponding to a positive eigenfunction) of the Steklov eigenvalue prob-
lem )

0 UN aUN
Qi s + b. —
Y dyidy; 7 dy;

with spectral parameter A in the boundary condition

0 in (0,N)xw, (4.8)

ouvn
Oy,

+9(y)vy = Avy  on {0} x w. (4.9)

Equation (4.8) is also supplied with the Dirichlet condition

oy =0 on{N} xw, (4.10)
and the Neumann condition 5
UN
=0 4.11
B0, (4.11)

on the lateral surface (0, N) X dw.
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By the Krein-Rutman theorem, problem (4.8)—(4.11) has the unique eigen-
value A = A(NV), the principal eigenvalue corresponding to a positive eigenfunc-
tion vn(y). Note that vy attains its maximum at a point on {0} x w, then
condition (4.9) at this point yields A(N) > mingg(y’). Also, A(N) enjoys the
monotonicity property: A(Np) < A(Nz) if Ny > Na > 0. Indeed, observe that
the positive function ¥ := vy, /vy, satisfies a convection-diffusion equation in

0, No) x w with the Neumann boundary condition 95 — () on (0, Na) x Ow, the
Ovg

Dirichlet condition © = 0 on {L2} X w and the condition 5971‘; = (A(N2) — A(Ny))v
on {0} X w. Since ¥ attains its positive maximum on {0} X w, we get A(Ng) —
A(N71) > 0. Thus there exists

Normalize the functions vy by setting minyc(g)xzvn(y) = 1 and pass to the
limit as N — oo using elliptic estimates to find a bounded positive solution of
(4.1)—(4.3) for g = g*.

Consider now a positive solution v of (4.1)—(4.3) in the case when b; < 0.
Here, according to [10], equation (4.1) with boundary condition (4.3) and pre-
scribed Dirichlet data on {0} X w has a unique bounded solution and it stabilizes
exponentially fast to a constant as y; — +00. Thus v stabilizes to a positive con-
stant. If ¥ is another positive solution, then their ratio v/v satisfies a convection-
diffusion equation with the boundary condition 8%(0/@) = 0 on {0} X w and
tends to a constant as y; — 4o00. Consequently, the function v/¢ is necessar-
ily constant. The same factorization argument shows that if (4.1)—(4.3) has a
bounded positive solution, then g = g*.

In the case of by > 0, for every prescribed positive Dirichlet data on {0} x w
there is a solution of (4.8) satisfying (4.3) and vanishing as y; — +o0 (see [10]).
Such a solution can be chosen to dominate all functions vy and therefore their
limit v. Thus, for g = g*, there is a positive solution v* such that v* — 0 as y; —
+o0o. Let us consider § < g* and construct a solution oy of (4.8) in (0, N) x
w satisfying also (4.3) on (0, N) x dw. We seek 0y in the form oy = wy(v* +
J), where v* is a solution of (4.1)—(4.3) for g = g* and ¢ is a positive constant
to be chosen later. Substituting this representation in (4.8) and (4.3) leads to
a convection-diffusion equation for wy and the Neumann condition ‘?;”Ti" =0 on
(0, N) x Ow. We also prescribe the Dirichlet data wy = 1/(v* +0) on {N} x w.
Finally, we want wx(v* + §) to satisfy (4.2) on {0} x w that yields

dwn J / —x —x — _
ot <U* +5(g(y)*g ) +9 g>wN = 0. (4.12)

For sufficiently small § > 0, the factor in front of wpy becomes positive,

v,fi_é (g(y’) — §*> +G"—g > 0 on {0} x w. For this § there exists a unique
positive solution wy such that ¥y is now well-defined. Moreover, applying the
maximum principle, we get wy < max(yyxe ﬁ < % in (0,N) Xw,ie, oy <C
with C independent of N. Also, according to [10], there exists a positive function

ug satisfying (4.1) in (0, +00) X w, boundary condition (4.3) on (0,+00) X Ow,



264 Andrey Piatnitski and Volodymyr Rybalko

and such that ug = 0 when y; = 0 and w9 — 1 as y; — +o0o. Then, by the
maximum principle, o5 > ug. Thus, taking the limit N — 400 (along some
sequence) yields a bounded positive solution v of (4.1)—(4.3) which also remains
bounded away from 0 as y; — +oo. Moreover, o > ¢ > 0 on {0} x w. If 0 =0
at a point on {0} X w, then by Hopf’s boundary lemma, 5972 < 0 at this point,
which contradicts (4.2).

Finally, assume by contradiction that for the case b; > 0 there exists a
bounded positive solution v for § > g*. Then, rewriting the solution v* (that
corresponds to ¢g* and vanishes as y; — +00) in the form v* = o(v + §) with
60 > 0, we get a convection-diffusion equation for © in the semi-infinite cylinder
(0, +00) with the Neumann boundary condition on the lateral surface and the
following condition on {0} x w:

9% 5 N )
8Va—i—(U+6(g(y)—g)+g—g>v—0 on {0} x w.

On the other hand, ¥ attains its (positive) maximum on {0} X w (it vanishes as
y1 — 00), which contradicts the above boundary condition as 6 > 0 is sufficiently

small. O

Together with (4.1)—(4.3), we consider the following formally adjoint problem:

0? d .

Gty (@) gy, Gw) =0 (0o xw, (419)
87w+ b—ia’—i— () Jw=gw on {0} X w (4.14)
v, 1 dy; i1 T gy =g , .

ow 0
o +v; (8%%]- — bj)w =0 on (0,4+00) X dw. (4.15)

Problem (4.13)—(4.15) is reduced to that of the form (4.1)—(4.3) by factorizing
with 1-periodic in y; solution of problem (4.4), (4.5) where 6* is normalized by
(4.6). Indeed, represent w as w = §*w and observe that w satisfies the equation

9?2 0 . )
aijmw + BjaT/jw =0 in (0,+00) x w, (4.16)

where 3; = e%a%i(aije*) — bj, with the Neumann condition on the lateral surface

and the Fourier condition on the base:

ow

o 0 on (0,400) X dw,
ow 0 . P U
o + (bl — 7(9*3% (an0") + g(y )>w =7 on {0} X w.

Thus, Theorem 4.1 applies also to problem (4.13)—(4.15). Moreover, the constant

*

g* is the same as in problem (4.1)—(4.3) due to the fact that it is obtained via
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the limit transition as N — +o0 in spectral problems adjoint to problems (4.8)—
(4.11). Observe also that the effective longitudinal drift 3, for problem (4.13)-
(4.15) is 1 = —by. To this end, note that 6* satisfies

& _ 9

m(aije*) ay; (B;6%) =0 in (—00, +00) X w
and
00* b .
aVavLVj(ayiaij—ﬁj)G -0 on (=00, +00) X duw.
Consequently,
_ P 5 )
- 2" (a1,0") — 010" — —— (a1;0") )dyrdy = —b,.
Bl /(0,1)><UJ< ayj( 1j ) 1 ay]( 15 )> y1dy 1

These results are summarized in

Theorem 4.2. Let by be given by (4.7). Problem (4.13)~(4.15) has a unique
(up to multiplication by a positive constant) bounded positive solution for g = g*.
Moreover, for b > 0, the solution is bounded away from zero while for by < 0 the
solution necessarily decays to zero (exponentially fast) as yy — oo. In the case
by > 0, bounded nontrivial solutions of (4.13)—(4.15) do not exist for g # g*. If
by < 0, then for every g > g* there is a bounded solution which is bounded away
from zero; there are no bounded solutions if g > g*.

Remark 4.3. According to the results of [9], the solutions v appearing in
Theorem 4.1 have the following regularity: v € C1([0,4+o0) x @) N C?((0, +00) x
w). Although the second derivatives of v are in general not bounded near {0} x
Ow (because the boundary is not smooth), if v is normalized such that v <1, its
second derivatives satisfy

0% < C
0y;0y; | — dist?(y, {0} x Ow)
for some 0 < ¢ < 1. The same holds for the solution w of the adjoint problem
w described in Theorem 4.2. Moreover, since the functions v and w/6* converge

with exponential rate to constants as y; — +00, their first and second derivatives
converge to 0 also with exponential rate (this follows by standard elliptic estimates

[6]).
Next observation is important for the analysis in Section 5.

Proposition 4.4. Let v and w be the solutions of (4.1)—(4.3) and (4.13)—
(4.15) with g =g, and g =g,,, respectively. Then the vector field

1
<b]- + 2a;; Ologv oygv> VW — i(aijvw)

i

is divergence-free in the semi-infinite cylinder (0, +00) X w, its normal component
on the lateral surface (0,+00) X Ow vanishes while the normal component on the
base {0} X w equals (g, — G,,)vw.
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Proof. The claim follows by algebraic manipulations with equations and
boundary conditions satisfied by the functions v and w. O

The remainder of this Section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. The application of Theorem 4.1 to problem (3.7)—
(3.9) yields the effective constant g* (p1) whose dependence on p; is examined
hereafter. Recall that g* (p;) is obtained by g*(p1) = imy_ 100 A(N,p1) via
the eigenvalues A(V,p1) of the Steklov spectral problems in truncated cylinders
(cf. problem (4.8)—(4.11)). Let v(y, N,p1) be an eigenfunction corresponding to
A(N,p1). Then the function ¢ := e P¥16(y, p1,0)v(y, N,p1)) solves

9% D¢ -
in (0, N) X w and satisfies
96 )0 on(0, N) x dw B
o {A(N,pl)gb )6 on (0} xw and ¢ =0on {N} xw. (4.18)

Now consider an arbitrary p; such that H(0,5;) = H(0,p1) and substitute the
representation ¢ = e P10(y,0,51)0(y, N,p1)) with ¢ = eP¥1¢/0(y,0,p1) in
(4.17), (4.18) to conclude that A(N,p;) = A(N,p1) and v is a solution of the
Steklov problem in the truncated cylinder with p; in place of p;. Thus, A(V,p1)
is expressed as a function of H(0,p1). The same property holds for g* (p;) and
we write, with a little abuse of notation,

9~ =g (h), h=H(0,p).

It is straightforward to verify that the effective longitudinal drift b; for prob-
lem (3.7)—(3.9) is given by

- oOH

h@ﬂz—@;mmﬂ. (4.19)

Also, the continuity of g* (h) is established directly by resolving the equation h =
H(0,p1) with p; such that g—g(o,pl) > 0 and considering problem (3.7)—(3.9).
We proceed with monotonicity of §* (k). Given h and h > h such that there
are the solutions p; and p; > p; of the equations H(0,p1) = h, H(0,p1) = h.
Choose the solution p; such that g—pﬁl((),pl) > 0. By Theorem 4.1, there is a
bounded positive function v that satisfies equation (4.8) in (0,+00) X w along
with boundary conditions (4.11) on (0, +00) x dw and (4.9) on {0} x w, where
g_(p1) =g (H(0,p1)). Then ¢ := e P¥10(y, 0, p1)v satisfies (4.17) in (0, +00) X
w along with the boundary conditions % =0 and g—‘i +9-(y)p = 3" (h)$ on

V,
the lateral surface and the base, respectively. Replacing p; by p1, we get another
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bounded positive function v whose properties are analogous to those of v and
define ¢ by ¢ = e P1¥10(y,0,p1)0. Then the ratio ¢ = ¢/¢ satisfies

dlogo\ O - B
. >%—(h—h)¢_o (4.20)

82
aij (0, y)ayigpyj + <bj(0, y) + 2a;;(0,y)

in (0,400) X w and the boundary conditions aw =0 on (0,400) X dw,

oY
oy,

Since v (exponentially) decays to 0 as y; — 400, its maximum is necessarily
attained at a point on {0} X w. Then the strict inequality g (h) —g_(h) >0
follows by Hopf’s boundary lemma.

To obtain a lower bound for g*(h) as h — 400, choose an arbitrary
p1 solving the equation H(0,p;) = h and consider the functions ¢ =
e P (y,0,p1)v(y, N,p1) (in truncated cylinders). Multiply (4.17) by ¢ and
integrate over (0, N) x w to obtain via integration by parts

/ 00 dy' / a(Oy)a¢a¢y
{0} xw aVa (0,N)xw Y y; ayj

———2= — b:(0, —od )
- /(O,N)Xw < yi i(0,9) 3yj¢ Y (4.22)

h — ¢(0, 2dy.
+ /w,mm( (0, 9))é%dy

— (G (A) — g_(h)¥ on {0} x w. (4.21)

Using (4.21) in (4.22) and applying the Cauchy—Schwarz inequality, we get
AW+ [ gz [ (Dver (- o) dy,
{0} xw (0,N)xw

where C_ = max,, |g—|, 7 is the ellipticity constant of a;; and C; depends on =y
and L>-bounds for | 24%)[ 1b;(0, y)| and |¢(0,y)|. Thus,

N
¢21(0)/0 <%|90/(t)|2+(h—C1)902(t)>dt,

where the infimum is taken over all ¢ € H1(0, N) such that ¢o(N) = 0. Solving the
latter minimization problem, we derive the bound A(N,p;) > /~v(h— C1)/2 —
C_, the required lower bound for g* (h) follows by passing to the limit N — +oc.
Theorem 3.1 is proved. O

A(N,p1) + C_ > inf

5. Two-term asymptotic formulas for the first and higher order
eigenvalues

In this section, we consider the asymptotic behavior of the solutions of spectral
problem (2.4) under a structure assumption on the effective problem (3.3), (3.10),
(3.11). We assume here that

the maximum in (3.12) is strict, it is attained at an inner point £ € (0, L),



268 Andrey Piatnitski and Volodymyr Rybalko

"
and —V := (minH(ml,p1)> <0atz =& (5.1)
p1

Under this condition we establish the first two terms in the asymptotic expansion
of the eigenvalues. Note that the technique developed here allows us to treat the
first eigenvalue as well as higher order ones while the method in Section 3 is
based on the maximum principle and therefore can be applied only to the first
eigenpair.

Under condition (5.1) there is a twice continuously differentiable function
p1(x1) such that

H(zy,pi(z1)) < F(&I’l(éﬁ@ A) - in [0, L)\ {€}, (5.2)
H (x5, p1(2F)) > ha, ZZ (2, p1(25)) > 0 at the ends 27 = #, (5.3)
(H(z1,p1(21)))" = =V <0 at 2 = €. (5.4)

Note that the first inequality in (5.2) implies that

g-(p1(0)) >0, 7y (p(L)) > 0. (5.5)

Let Q(x1) be a primitive function of py(z1), @' (x1) = pi(x1). Represent the
eigenfunctions u. with their corresponding eigenvalues A in the form

Ue = eiQ(wl)/EG(x/Ev Z1,P1 ($1))¢5, >\E == X — Eleg, (56)

where 0(y, x1, p1) is the 1-periodic in y; positive solution of (3.4), (3.5) normalized
by f(o 1)xew O(y,z1,p1)dy = 1. Then the equation L.u. = A\-u. rewrites as

1
ﬁgl)(ﬁe - EU($1)¢€ = —fle®e + 7321)%7 (5-7)
where

U(zy) =X — H(pi(z1),71),

52
W — e, 07¢ O
L e 5al](x1,x/€)axzax] +bj( xl,x/e) 9z,
~ dlogO(y, 1,
bj(z1,y) = b;j(z1,y) + 2aj(x1,y) = (yaz% pi(zy) 2a15(71,y)p1(21),
9¢
REge = ((Noe +em /5=,

and C ; 1j 6) are uniformly bounded functions. Multiply (5.7) by the function
0*(z/e, x1,p1(x1)), where 6*(y, x1,p1) is the positive 1—periodic in y; solution of
the adjoint to (3.7) equation
0? 0 -

gy, @)~ g, (00 )=0 in R xw (5.8)
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with the boundary condition

00* 0 =\ .
o +v; <8yiaij - bj>9 =0 on R x Ow, (5.9)
normalized by
1
I 0" (y, z1, p1(21))dy = 1.
| (0,1)xw

After rearranging, we obtain

8<ma8%>+B*MfﬂﬁuﬁWQ=—%m@+R9@, (5.10)

€ e
856,' J 895]-

where Rg) P = Ca(z)qba . anj(-i)% and Ca(z), ﬁ](i) are uniformly bounded functions,

B = B(x1,y) is the vector field with the components

Bj(z1,y) = 0" (z1,y)bj(21,y) — aayi(aij($1ay)9*($l7y))~ (5.11)
Observe that due to (5.8), (5.9), divyB = 0 and the normal component of the
vector field B vanishes when y € R x Ow.

Representation (5.6) is modified in a small neighborhood of the base {0} x
ew by using another factorization which simplifies the boundary condition for ¢,
on {0} X ew. Namely, let v_(y) be the solution of (3.7)—(3.9) with p; = p1(0),
g_(p1) = g* (p1(0)) (and @ = 0(y,0,p1(0))) that converges to 1 (exponentially
fast) as y1 — +o00. Set 1. = ¢-/v_(x/e), and observe that v_ satisfies

LWy (x/s)‘ < Oa1/e) 001/ < Oy, (5.12)

see Remark 4.3. Then equation (5.7) in terms of new unknown function v, can
be written as

dlogv_ 0. 1

— —U(@1)tpe = —pepe + RV (5.13)

LD, + 2a4(x1, z/¢) dy; Oxj; ¢

(the structure and the properties of RS’) are analogous to those of ’ng), k=1,2),

and the boundary condition at the base reads

?;ﬁz i g- (p;(O))¢e — G- ($//5)¢5 on {0} x ew, (5.14)

with some bounded function g_. Finally, equation (5.13) is symmetrized similarly
to (5.10). To this end, introduce the positive solution w_(y) of the problem
adjoint to (3.7)—(3.9) with p1 = p1(0), g_(p1) = 0(< g~ (p1(0))), which satisfies
w—(y)/0*(y,0,p1(0)) — 1 (exponentially fast) as y; — +o00; the existence of such
a solution is proved in Section 4. Multiply (5.13) by

é*(xl,x/s) — U*('x/‘g)w*(w/e) o*

P (/=0 p(0) /e (5.15)
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and rearrange the terms as in (5.10) to find

gai <§* aij gw ) +B V. — fU(xl)a*ng = —pf e+ Retpe,  (5.16)

where B = B(z1,%) is the vector field with the components

dlogo_(y)) _
yi

= 0*(z1,y) <l~)j(x1,y) + 2ai5(z1,y) 8(; (aij(l‘l,y)é (x1, )) ,

or Bj = Bj(l) + B, BO) = B(l)(xl, y) is the vector field with the components

A0 _ [ v-W)w-(y) ] -
B’ = <9*(y,0,pl(0)) - 1) 0 (yaxlapl(xl))b]($17y)

+ 2a;j (21, y)v— (y)w-(y) i 10%; W) ezizzz’,/l‘(l): ]]ji Eg)l)))

Recall that divyB = 0, while by Proposition 4.4, we have divyé(l) = 0 at
H(1 7 dlogv_

11 =0 (B(0,y) = ~B;(0,9) + v-(y)w-(y) (5, (0.9) + 2a;5(0, y) 25 —

%(aij(o,y)v_(y)w_(y))) hence div, B(z1,y) = o) ax div, BM (s, y)ds. At the

same time, \a%ldivylé(l)(xl,y | < Ce ¥ /yf with ¢ > 0 and 0 < 0 < 1, see
Remark 4.3. Thus,

‘divB(xl,x/e)‘ <Ci+ E ‘divy B(l)(:cl,a:/s)‘

< 01+C/ 7 *cm/s < (. (5.17)
1

The similar reasonings lead to the following estimate for the normal component
of B: }
Bj(:nl,x/s)z/j‘ <eC when 7' € edw. (5.18)

Finally, by Proposition 4.4,
— Bi(x1,2/¢) = G (p1(0))0*(z1,z/e) when z; = 0. (5.19)

Since the functions v_(y) and w—(y)/0%(y,0,p1(0)) converge to 1 exponentially
fast as y; — oo, the above constructed functions 0*(z1,y) and O(z1,y) =
v_(y)0(y,0,p1(0)) stabilize, with exponential rate, to the periodic functions
0*(y, z1,p1(x1)) and O(y, x1,p1(z1)) as y1 — +oo.

Repeating the above construction near the base {L} x ew, we end up with ap-
propriately modified factors 8%, § and the function ¢, = eQ(‘“ /fuc(x))0(z1, x/€)
which satisfies the equation (5.16) in the whole cylinder (0, L) X ew, where R 1. =
Cee + 817j,6g—x§ and (., ;. are uniformly bounded functions. Also, 1. satisfies

e
v,

= T€v6 (5.20)
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on (0,L) X edw, with |7-| < C, boundary condition (5.14) on {0} X ew and an
analogous one on {L} x ew. The vector field B(z1,x/¢) has uniformly bounded
divergence and its normal component satisfies (5.18) on the lateral surface, (5.19)
on {0} x ew and By (x1,x/¢) = % (p1(0))0* (21,2 /¢) when 21 = L.

Now introduce the change of variables 21 = (x1 — &§)/+v/e, 2/ = 2’/ /e and
consider in the rescaled cylinder Q- = (=£//e, (L —§)//€) X \/ew the equation

O (v 9\ _1g. 1 e
z—:¢ 821 <9 azyazj> \ﬁB V¢+€U(€+\@2‘1)9 (0

+ (AG* + R = 6" f, (5.21)

where 6% = 0*(x1,2/¢), aij = aij(z1,2/¢) and B = B(xy,x/e) with z1 = £ +
Vez, @l = e, Rap = b+ ﬁnﬂ?f%’ and A > 0 will be chosen later. Supply
equation (5.21) with the rescaled (according to the above change of variables)
boundary condition (5.20) on the lateral surface, (5.14) on the base {—¢§/\/€} x
Vew and its counterpart on the second base:

(%p = Verew on (—§/ve, (L —§)/Ve) x Vedw, (5.22)
o | gi(p1(0)
81/a NG

so that ¢, = e@@)/ey_(2)/0(z /e, ml)} (R 2l R satisfies (5.22), (5.23) and

(5.21) with f = (A + pe)e.
Multiply (5.21) by ¢ and integrate over  / to obtain via integrating by parts

GV g — Vege (! fe)d on {(L£L)/2 - ©)/VE} x vaw, (5.23)

1 2 1- ~ N* 8¢ wz ~* 81/} 81/)
ey, faebie= [ (05 spBe)ase [ Fagiiie
+1 / (U(€+ Vex)0* +eA* + £(.)p?dz
S Q\f
= [ (57 - vEn g ) e (5.24)
Qe

By virtue of (5.2)—(5.4), U(£+v/€21) > ce2? with some ¢ > 0. Then from (5.24),
using (5.22), (5.23), (5.17) (which yields |div,B| < Cy/e), (5.18), (5.19) (and its
counterpart on the base {(L —&£)//e} x v/ew), we obtain that

&/ (V02 + (A = O)® + 2i9%) dz < f2dz + /e ¥2dS, (5.25)

Qe Q2 o0

where 4, C' are independent of €. Consequently there is some A > 0 independent
of € such that a unique solution ¢ of (5.21) (with boundary conditions (5.22),
(5.23)) exists for any f € LQ(Q\E) and satisfies

/ (IVOP+ (142807 dz<C | fde (5.26)
Q\/E Q\/E
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Arguing in a similar way, we obtain the following estimate for the eigenfunction

1. of the operator = L. corresponding to an (in general complex) eigenvalue A +

0*
He:
| (0P s @bl s < O+ Re(ue) [ a2
Q= Q=
Lemma 5.1. Assume that Re(u:) < C. Then
(i) |pel| s uniformly bounded, and

(ii) every partial limit of p. as € — 0 is an eigenvalue fi of the one-dimensional
problem

wwwuéww@wmwmzwmxzﬁR (5.28)

where V = —%ig(pl (£),8), the constants ¢ > 0 and m are given by formulas
1

(5.36) and (5.38) below.

Moreover, under the normalization

1 / 9
T | [elfdz =1, (5.29)
[Vew| Qe

the eigenfunctions 1. converge asec — 0, up to a subsequence, to an eigenfunction
¥ in the following sense:

1
|[Vewl Qe

Proof. 1t follows from (5.27) and (5.29) that, up to extracting a subsequence,
the functions 1. converge to a limit ) = ¢)(z1) (where the convergence is under-
stood in the sense (5.30)), moreover

[ihe — ¥|2dz — 0. (5.30)

/00 (\12/|2 +(1+ zf)|1/3|2) dz; < oo and /00 |1ﬂ]2d21 =1. (5.31)

—00

To identify t, multiply the equation £.1e = (A + pz)0*1. by an oscillating test
function p. (which will be chosen later) and integrate over {2 /& using integration
by parts and rearranging terms, to get

. 0 0pe 1 / V o, ~
it == + —1{B},. -V + —21 +
/Qﬁ ({9 a]}£ 92 02, \/51/)5{ }5 pg) dz o, 5 27 + G ) 0" epedz

+ \k/ﬂf %((B — {B}g) Ve +pedinB)dZ

~ - . B-
=%/ m%%@+/ 50, By o) as
Q 00z \ a va

NG
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* 0* 81/}5 apz—:
/Qﬁ({ aij} ¢ “J) 0z 0z
V222 -UE+ .
+/Q\/g <€ 21/ (5 \[2'1)0 f ]5 )psdz (5.32)

where {(9*(17;]'}5 = 0"(x1,y)a;j(x1,y) and {B}g = B(z1,y) withazy =&, y1 = {/e+
z21/v/e, y = 2'/\/e. Let p(z1) be a smooth function with a compact support, say
suppp C [—R, R], and consider the test functions p.(z) of the form

pe(z) = p(21) + Vep (z1)x(§/2 + 21 /VE, 2/ V/eE)

with x(y) being the 1-periodic in y; solution of the standard cell problem

0 (s 0 —
— o (€€ 5 -t ) + BEw) Vit =0 (53)
n (—o00,00) X w with the boundary condition
5()291—3/1) =0 on (—00,00) X Ow. (5.34)

Since divyB(§,y) = 0, B(§,y) - v = 0 when 3 € dw and f(o 1)xew Bi(&y)dy =
—g—pﬁl(pl (€),&) = 0, there exists a unique solution of (5.33), (5.34). Then, inte-

grating by parts in the first term 1Y of the first line of (5.32) and changing the
variables y1 = {/e + z1/V/e, ¥y = 2'/\/e, we obtain

0 0
1D = cn/2 / dy / dy' ). (le 0*ay — 0% ay; 8" ay,(e*am) o

+5n/2/dy1/ Y0 vianxp"dS + O (5n/2)
Ow

= —5"/2Q/1ﬁ (Veyr —&/Ve) p" (Veyr — €/VeE) dyr + O (€n/2>

R
— /2, / 90 (1)de + O (gnﬂ) , (5.35)

where the integrals with respect to y; in the first, second and third lines are

actually taken over (/e — R/+\/e,&/e + R/\/¢),
ox
CI:/ (6 ars + 0* G1J8 — Bix)dy
(0,1)xw
—/ 9*a--8(+ )8(+ )dy. (5.36)
(0.1)xw zya X Ty ay X Y1 .

Next we establish asymptotic formulas for other terms in (5.32). The terms in
(2) .
in

the two last lines are of order O (5”/ 2). The same is true for the integral I¢
the second line, though it is a little less obvious. First, we establish that

R
IgQ) — €(n1)/2/ 1/}(21)(K121p/(2:1) —+ KQﬂ(Z]_))le + O (En/2> ,
—R
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with
0B, 0B >
Ky = — (&) + Vx5 — (&) ) dy,
= Grew v G en )
0B,
K =/ (& y)dy.
2 (0,1)xw 8351( )
Then we observe that
0H
[ By == r(en) o),
(0,1) xw P1

therefore o
0 O0H

Ky = _aifvlaipl(xl’pl(zl)) =0

z1=¢

because of conditions (5.1)-(5.4). We also know that div,B(zi,y) = 0 and
B(x1,y)v = 0 when ¢y € Ow, hence K1 = 0. Finally, the asymptotic formu-
las for the sum Ig(?’) of the terms in the third line of (5.32) and the second term
fg(l) in the first line are:

R
18 = 02, [ wlepe)da + (14 a0 (72)
-R

_ R B O0log6
_eln 1)/2/ d21¢(21)p(21)/ 0*v;ai aig
-R (0,1)xdw L1

21y _ -z [TV 2 n/2
IV =¢ Ezlv,b(zl)p(zl)dzl +0 <5 )
-R

ds,

r1=¢

R
+6("1)/2/ dz19(z1)p(21)

"R

6" , 06 %0

- 0+ (2p1 — b)) o) — 201,20
. /(0,1)><w 0 (au <p1 @ 1)3$1> i 3$133/j)

where 0* = 0*(z1,y), 0 = 0(y,z1,p1(21)), p1 = p1(21), aij = aij(21,y), bj =
bj(x1,y). Thus, substituting the above obtained asymptotic formulas for the
terms in (5.32) and dividing by e™®1/2 we get

dy,

x1=£

/ d(a) (—qp”(z1> +5VRo(a1) + mpla1) - uap(z1)> dz
R
= (1+ |pe]) O (Ve), (5.37)

where
o* , ae) 920 )
015 0 (s (0 + Con =y 55205, )|, e "
log 0
+ / O vrag 228 ds. (5.38)
(0,1)x 0w Ox1 |y ¢
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Since p is an arbitrary function (smooth and compactly supported), we conclude

that |uc| is bounded; otherwise, 1 is identically zero that contradicts (5.31). Now,
passing to the limit in (5.37), we arrive at the weak formulation of (5.28). O

Remark 5.2. The eigenfunction 6* is represented as the product 6* = 69 of
the eigenfunction 6 of problem (3.4), (3.5) and the eigenfunction ¢ of the problem
adjoint to (3.4), (3.5).

Remark 5.3. Definition (5.38) of m is actually independent of any particular
choice of the function pi(x1): p1(§) is uniquely determined as the minimizer of
H(p1,€), and under conditions (5.1)—(5.4),

0*°H 0’H
/ e — —_—
9O = 5o g 6m(©) [ G € m(©)
Now consider the auxiliary problem
, 1
Lop = —qA + 5sz¢ +(m+A)Y=0"f inQ/; (5.39)

with the Neumann condition % = 0 on 02 e In the operator form it reads

e%ﬁgw = f. We endow L*(2 ) with the norm [[¢[2,. = ﬁfﬂﬁ V20*dz
and the corresponding inner product, then g%ﬁs is a selfadjoint operator. It has
a discrete spectrum. Moreover, using the Courant minimax principle, one can
prove that the eigenvalues of H%EAE converge to the numbers A+ [L(k), where ,&(1) <
(2 < ... are eigenvalues of (5.28).

Next we show that H(e%ﬁa)*l — (9%[35)
operator norm (over LQ(Q\@)). To this end, consider for a given f. € LQ(Q\/g)
with f2dz = 1 the solutions 1. and @25 of the equations L., = 6* f.

= 0, where || - || denotes the

7= J

el Joz
and L., = 0% f.. Revising the proof of Lemma 5.1, we see that it can be used
(with minimal modifications) to show that up to a subsequence ﬁ J. o (Y2 —

¥)2dz — 0. Here a function v = 1(21) solves

(1) + V) + (A m(en) = [ (21),

where f*(z1) is a weak limit of the functions

0% f) (1) = L fo*dz'

B |\/g(,u| {21} X /ew
(extended by 0 on R\ [-£/v/E, (L — &) /+/€]) in L?(R). The same result holds for
1[16, thus H (9%26 — )\I)fl — (%ﬁg — )\I)le — 0 for A = 0. This result extends to
the uniform in A resolvent convergence in operator norm on an arbitrary compact

subset of C\ {1, 4?) ...}, the latter in turn yields the convergence of spectral
projectors in the operator norm. Thus we have proved the following result.
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Theorem 5.4. Assume that condition (5.1) is satisfied along with assump-

tions (2.5), (2.6). Let the eigenvalues A = AP of problem (2.4) be enumerated
by the magnitude of their real parts (in the decreasing order), then

AR =X — a4 o(e),

where ﬂ(k) are eigenvalues of the operator —q% + %Vz% +m on R, enumerated
1

by their magnitude.

Supports. An essential part of this work was done during the visit of the
second author at UiT, campus Narvik, in the autumn of 2018. The visit was
supported by BFS/TFS project ”Pure Mathematics in Norway”.
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CunrynsgpHo 30ypeHi clieKTpaJibHI mpobJjieMu B
TOHKOMY HWJIIHJPi 3 ymoBamu Pyp’e Ha fioro ocHoBax

Andrey Piatnitski and Volodymyr Rybalko

Y poboTi BUBYAETHCH HUKHS YACTUHA CIIEKTPA CUHTYJISAPHO 30ypPEHOro
eJIIITUIHOI'O OIlepaToOpa JAPYTOro HOPSJIKY, KUl BU3HAUEHO B TOHKOMY IH-
JHHPI Ta SKUi Mae nepioauydni KoedillieHTH B MOIOBKHBOMY HampsiMi. Po3-
IAHYTO OfHOPiaHy ymMoBy Hefimana na 6iuniil moBepxHi IuiHapa Ta OgHO-
pinay ymoBy Dyp’e 3araiabHOrO BUIVIsLY Ha ioro ocHoBax. /loBemeHo, 1m0
ACHMIITOTUYIHE [TOBOJI?KEHHS [IEPITIOI BJIACHOI ITAPH MO2Ke Oy TH 0XapaKTePu30-
BAHO B TE€PMiHAX I'PAHUYIHOI OJHOBUMIpHOI TpobyiemMu i1t ebeKTUBHOTO PiB-
HaHHa [aminbrona—{kobi 3 edbekTuBHUMEU KpaiioBuMu ymMoBamu. st Toro
106 o0y IyBaTH KOPEKTOPH ITPUMEXKOBOIO IIapy, BUBYAETHCS CIIEKTPAJIbHA,
upobsiema tuiry CreksioBa B HaliBHECKIHUEHHOMY TiHAP] (1l pe3yiabraru
MAIOTh OKpeMUii inTepec). 3a CTPYKTYPHUX [PUILYIIEHb BITHOCHO eDeKTUB-
HOI 1pobuieMH, fKi BeAyTh 110 JoKasizamil (y gesaKoMy CeHci) BiaacHuUX (DyH-
KIi#l BcepeauHi IMUIiHAPA, JOBEIEHO JIBOYUICHHY ACHMITOTHYHY (POPMYITY
JIJIsI TIEPIIIOrO Ta HACTYITHUX BJIACHUX 3HAYEHD.

KitrodoBi csioBa: cunrysisipHo 30ypeHi omepaTopu, 3aiada yCcepeaHeHHs,
BJIACHI 3HadeHHs, BacHi GyHKIII, KpaitoBa ymoBa Pyp’e.
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