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Tubular Surfaces with Galilean Darboux
Frame in Gj
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The main point of the research is to study a new approach for defin-
ing the tubular surfaces with the Galilean Darboux frame in 3-dimensional
Galilean space. Also, we obtain the Gaussian and mean curvatures and de-
rive some parametrizations for a special curve to lie on tubular surfaces with
the Galilean Darboux frame.
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1. Introduction

A tubular surface is described as the envelope of the set of spheres with radius
r and with centers lying on a spine curve. The tubular surface can be charac-
terized using the Frenet frame, and is a helpful structure in many application
areas such as medicine and computer aided geometric design. Therefore, there
have been many studies in detecting and characterizing the tubular surfaces and
special surfaces in several spaces [3,6,7,9,10,14,21]. Lately, several authors have
been studied in Galilean space [2,4,15,22].

On the other hand, Dogan et al. [5] introduced a new method to parametrize
and characterize a tubular surface with Darboux frame in Euclidean 3-space, and
Kiziltug et al. [8] developed this method for Minkowski space.

The aim of this paper is to improve this new approach and to define the tubu-
lar surfaces with the Galilean Darboux frame in the Galilean 3-space. We further
compute the Gaussian and mean curvatures and derive some characterizations
for given curves as lying on a tubular surface in terms of the Galilean Darboux
frame.

2. Preliminaries

The Galilean 3-space 33 is a Cayley—Klein space equipped with the projective
metric of signature (0,0, 4, +), given in [11]. The absolute figure of the Galilean
space consists of an ordered triple {w, f, I} in which w is the ideal (absolute)
plane, f is the line (absolute line) in w and I is the fixed elliptic involution of
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f. We introduce homogeneous coordinates in Gs in such a way that the absolute
plane w is given by xg = 0, the absolute line f, by o = 1 = 0, and the elliptic
involution, by

(0:0:20:23) > (0:0:23: —x2). (2.1)

A plane is called Euclidean if it contains f, otherwise it is called isotropic, i.e.,
planes x = const are Euclidean, and so is the plane w. Other planes are isotropic.
In other words, an isotropic plane does not involve any isotropic direction.

Definition 2.1 ([17]). Let A = (A1, A2, A3) and £ = (&1,£2,&3) be any two
vectors in G3. A vector A is called isotropic if A1 = 0, otherwise it is called
non-isotropic. Then the Galilean scalar product of these vectors is given by

€)= A& if A1 #0o0r & #0
U hebeF A6 if A =0and & =0

Definition 2.2 ([1,20]). Let A = (A1, A2, A3) and & = (&1, &2,&3) be any two
vectors in Gs. The Galilean cross product is given as

;

0 ey e3

M A A3l ifA £Oor& #£0
AAE = & & & ’

€] €2 €3

)\1 )\2 )\3 if /\1 75 0 and §1 75 0

&1 & &

where e; = (1,0,0),e2 = (0,1,0),e3 = (0,0, 1).

Let a be an admissible curve of the class C'"*° in Gg, and parametrized by the
invariant parameter s, defined by

a(s)=(s,f(s),9(5).

Then the curvatures k (s) and 7 (s) of a(s) can be written as

R (s) =\ F7 () + ¢ ()2,
~ det(of (s),0” (), (5))
T (3) - /‘i2 (S) )

respectively, and the Frenet formula of the curve is written as

T = kN,
N' =1B,
B'= —71N,

where T, N and B are said to be the tangent, the principal normal and the
binormal vectors of «(s) [13].
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Let the equation of a surface ¥ = ¥(s, ) in Gs be given by
U(s,d) = (x(s,9),y(s, ), 2(s,0)).

Then the unit isotropic normal vector field n on ¥(s, ) is given by

. \1’71/\\1’72
1T el
where the partial differentiations with respect to s and ¥ will be denoted by
oVY(s, oV(s,
suffixes 1 and 2 respectively, that is, ¥ | = M and W o = L)

s
On the other hand, we get the isotropic unit vector § in the tangent plane of

the surface as
2oV —x1V 9

0= 2= - 2 2.2
el (22)

0 9 ox(s, v

where z; = M, o= x(;g) and w = ||¥ 1AW 5.
Let us define
g1 =21, g2 = I 2, 9i5 = 9i95,
12%7 92:_32717 gij:gigj (4,5 =1,2),
w w

hll = <\i’717 \i,,1>’ h12 = <‘ijvl’ \i]72>’ h22 - <¢”27 \i,’2>’

where \ii,l and \1172 are the projections of the vectors ¥ ; and V¥ onto the yz-
plane, respectively. Then the corresponding matrix of the first fundamental form
ds? of the surface ¥(s,?) is given by (cf. [18])

ds? 0
2 _ 1
i = (% ). (2.3

where ds% = (g1ds + god))? and ds% = h11ds® +2h1a ds dY + hoad¥?. In such case,
we denote the coefficients of ds? by g;‘j On the other hand, the function w can
be represented in terms of g; and h;; as follows:

w? = gthas — 2g192h12 + g3ha1.

The Gaussian curvature and the mean curvature of a surface are defined
by means of the coefficients of the second fundamental form L;;, which are the
normal components of ¥ ; ; (7,7 =1,2). That is,

2
V5= T30+ Lin,
k=1
where Ffj is the Christoffel symbols of the surface and L;; are given by

1 ~ ~ 1 ~ ~
L;; = £<91‘I’,m‘ — iV 1,m) = ;<92‘I’,m‘ —i;V 2,m). (2.4)
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From this, the Gaussian curvature K and the mean curvature H of the surface
are expressed as [16]

_ LyLoy — L3,
w2

_ 93L11 — 29192012 + g7 Lao

N 2?2 '

K

)

H

Definition 2.3 ([19]). Let T" be the unit tangent vector of a curve a on a
surface in Gg, and n be the unit normal vector to the surface at the point a(s)
of a, respectively. Let Q = nAT be the tangential-normal. Then {T',Q,n} is an
orthonormal frame at a(s) in Gs. The frame is called a Galilean Darboux frame
or a tangent-normal frame and expressed as

T = kyQ + knn,
Q = TgM,
n = —74Q,

where kg, k, and 7, are the geodesic curvature, the normal curvature and the
geodesic torsion, respectively.

For the curvature x of a(s), x* = k2 + k7 holds. Also, a curve afs) is a
geodesic or an asymptotic curve or a line of curvature if and only if k; or &, or
74 vanishes, respectively.

3. Tubular surfaces with Darboux frame in Galilean space Gg

The starting point of this section is to express a simple method for
parametrization of tubular surfaces with the Galilean Darboux frame in Ggs. Let
us denote by o the vector connecting the point from «(s) with the point from the
surface with the Galilean Darboux frame {7, @Q,n} along a(s). Then, we have
the position vector P of a point on the surface as follows:

P =a(s) +o. (3.1)
Thus, we can write
o =r(cos¥Q(s) + sinIn(s)), (3.2)

where r is a constant radius of a Euclidean circle of the Galilean Darboux frame
and ¢ is the Euclidean angle between the isotropic vectors @ and o.

Combining (3.1) and (3.2), we can define a tubular surface with the constant
radius r in terms of the Galilean Darboux frame as

U(s, ) = a(s) + r(cos9Q(s) + sinIn(s)), (3.3)

where n is the unit isotropic normal vector of the surface along a curve «f(s)
parametrized by arc-length s. Then we get partial derivatives of W(s, ) with
respect to s and ¢ as follows:

V=T —r7ysinQ + r14 cos n (3.4)
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and
Uy = —rsin @ + r cos vn. (3.5)

It follows that the vector cross product of these vectors is obtained by
U AUy = —r(cos¥Q + sinvn), (3.6)
from above equation, for small r > 0, we have
[P AWy|| = r. (3.7)

Therefore, by using (3.6) and (3.7), the unit isotropic normal vector 1 of ¥(s, )
is found as
= —cos¥Q — sinYn. (3.8)

n
On the other hand, from (3.8) and (2.2), it is easy to show that
6 = sinY¥Q — cos vn.

Since @) and n are the isotropic vectors, using the Galilean Darboux frame, we
can obtain

g1=1, g2=0. (3.9)

By taking account of the projection of ¥, and Wy onto the Euclidean yz-plane,
we get
h22 = T2. (310)

If we substitute (3.9) and (3.10) into (2.3), the coefficients of the first funda-
mental form of the tubular surface with the Galilean Darboux frame in Galilean
space are obtained as

To compute the second fundamental form of ¥(s,d), we have to calculate the
following:

WU, = (k:g — rsin197'£’, — rcosﬁng) Q+ (k’n + rcosz%'; — rsin197'92) n, (3.11)
Uys = =174 cosVQ — r7gsinin,

Wy = —71 cosIQ — rsinn.

From (2.4) and (3.11), the coefficients of the second fundamental form are com-
puted as

Ly = —kgcos?V — k,sind + 7“7'92, Lig =17y, Loo=r. (3.12)
Thus, the Gaussian curvature K and the mean curvature H are expressed as

K:_kgcosﬁ—i—knsmﬁ, (3.13)

H=—. (3.14)
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4. Some characterizations for given curves as lying on tubular
surfaces

We will give the conditions for parameter curves being a geodesic, an asymp-
totic curve, and a line of curvature on the tubular surface ¥(s, ).

Theorem 4.1. For a tubular surface of VU(s,) given by (3.3),

1) J-parameter curves are geodesics.

2) A necessary and sufficient condition that s-parameter curves are also
geodesics is that kg, k, and 74 hold the system

— kpcost + kgsind — r7, = 0. (4.1)

Proof. It is well known that a curve lying on a surface is a geodesic if and
only if the acceleration vector o and the surface normal vector 7 are linearly
dependent, that is, nAa” = 0. Then, for the ¥- and s-parameter curves, we have

NAWyy = (rsind cost —rcosvsind) T = 0,

NAUgs = (—kn cos V¥ + kg sind — T’Té) T.

1) Since n A Wyy = 0, we can easily say that ¥-parameter curves are geodesics.
2) s-parameter curves are geodesics iff

nAWs = (—kncosﬁ—i— kg sind — 7‘7';) T = 0.
Thus, we get
(—kn cos ¥ + kgsind — 7"7';) =0.
O

Corollary 4.2. Let a(s) be a geodesic on the tubular surface V(s,d) given
by (3.3). If s-parameter curves are geodesics on V(s,), then the curvatures K
and T of a(s) satisfy the relation

9
#:-“?. (4.2)

Proof. If the center curve «(s) is a geodesic, then k; = 0. Thus, replacing
kg =01in (4.1), we simply get (4.2). O

Corollary 4.3. Let a(s) be an asymptotic curve on the tubular surface
U(s,v) given by (3.3). If s-parameter curves are asymptotic curves on ¥(s,v),
then the curvatures k and T of «(s) satisfy the relation

in
#:“f. (4.3)

Proof. If the center curve «a(s) is an asymptotic curve, then k, = 0. Thus,
replacing k, = 0 in (4.1), we simply get (4.3). O
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Theorem 4.4. For a tubular surface of (s, ) given by (3.3),

1) J-parameter curves cannot be asymptotic curves.

2) A necessary and sufficient condition that s-parameter curves are also asymp-
totic curves is that W(s, ) is produced by a moving sphere with the radius
function

. kg cos v + ky, sind _

2
g

c (4.4)
for some constant c.

Proof. A curve a(s) lying on the tubular surface ¥(s,®)) is an asymptotic
curve iff (n,@”) = 0. Then, for the ¥- and s-parameter curves, we have

1) Since (n,¥yy) = r # 0, Y-parameter curves cannot be asymptotic curves.

2) s-parameter curves are asymptotic curves iff

<777\Ijss> = —k’g cos V¥ — ky, sin?d + 7“7'; =0.

From the above equation, we obtain the radius function

kg cos ) + Ky, sind
rT = =

2
Tg

C

as a constant. O]

Corollary 4.5. Let s-parameter curves be asymptotic curves on the tubular
surface ¥(s,). Then, for the center curve a(s), we have the following conditions:

1) If a(s) is a geodesic on V(s,1), then

@ =c. (4.5)

r =
T

2) If a(s) is an asymptotic curve on V(s,v), then

r= Kcosy =c. (4.6)

2
3) «(s) cannot be a line of curvature on ¥(s,v).

Proof. 1) Since «(s) is a geodesic, k; = 0. So, from the Galilean Darboux
frame, we can write k, = x and 7, = 7. By replacing these in (4.4), we can easily
get (4.5).

2) Since a(s) is asymptotic, k, = 0. So, from the Galilean Darboux frame,
we can write k; = k and 7, = 7. By replacing these in (4.4), we can easily obtain
(4.6).

3) Since s-parameter curves are also asymptotic curves, they satisfy (4.4).
From this, 7, cannot be zero. ]
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Example 4.6. We can give some examples to verify the above Corollary.
For ¢ = 7, it follows that r = % is a constant. Thus «a(s) becomes
a Mannheim curve (for further information see [12]). For this, as a(s) is a

Mannheim curve, the s-parameter curve at © = 7,
T
U <s, 5) = af(s) +rn(s),

is a geodesic on U(s,v).
The same processes can be done for ¢ = 0, then we get r = %5 is a constant.
Thus a(s) becomes a Mannheim curve and the s-parameter curve at ¥ = 0,

U(s,0) = as) +rQ(s)
is an asymptotic curve on (s, ).

Theorem 4.7. A necessary and sufficient condition that s-parameter curves
are also lines of curvature is that the center curve a(s) is a line of curvature on
the tubular surface ¥(s,v).

Proof. 1t is well known that the parameter curves on a surface are lines of
curvature if and only if g7, = 0 and L1 = 0. Since gj, = 0 and L2 = r7, in the
surface, we can get 7, = 0 for a line of curvature, it means that a(s) is a line of
curvature on ¥(s, ). O

Theorem 4.8. For the center curve a(s) on a tubular surface ¥ (s, ),

1) If a(s) is a geodesic on V(s,1), then the Gaussian curvature of the surface

s obtained as -
K=y (4.7)
r

2) If a(s) is an asymptotic curve on V(s,V), then the Gaussian curvature is

obtained as 9
K=Y (4.8)

T

Proof. The proof can be done taking k;, = 0, k, = k, 7y = 7 and k, = 0,
kg = Kk, Ty = 7 into (3.13) and (3.14), respectively. O

Remark 4.9. We consider a tubular surface given as
O(s,9) = B(s) + r(cos¥N(s) + sin¥B(s)), (4.9)

where {T, N, B} is the Frenet frame of a curve 3(s) in Gs. In this case, the
Gaussian curvature K and the mean curvature H are given by [3]

K_ _/<;cos297 - i7
T 2r
where £ is the curvature of the curve 3(s).
In the sense, a tubular surface ¥(s,?) (3.3) generated by an asymptotic curve
)

a(s) is isometric to a tubular surface ®(s, 1) (4.9) generated by an arbitrary curve

B(s).
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Tpy6uacTi moBepxHi 3 raJijieeBuM penepom lapdoy B G
Dae Won Yoon and Ziihal Kii¢iikarslan Yiizbasg

CyTb IBOIO JIOCJIIIZKEHHS TI0JIATAE Y BUBYEHHI HOBOI'O IiIXO/Y /10 BU3HA-
YeHHsI TPyOJIaCTUX IOBEPXOHDL 3 rasijeeBumM periepom Japby y TpuBumip-
Homy tipoctopi [astistest. OTpuMaHO TaKOXK rayCoBy Ta CEPEJIHI0O KPUBHU3HU i
BUBEJIEHO [TApaAMETPHU3AIlIO JJIsl CIeliaJbHOI KPUBOI, IO JIEXKUTh Ha TPyOUa-
CTHX TIOBEPXHSX 3 raJyiyieeBumM perepom lapby.

KirrowoBi ciioBa: TpybuacTa moBepxHs, rajimeesuii pemep Jlapby, reome-
3UYHA JIiHisA, ACUMIITOTUYHA JIiHisg, mpocTip [asmies.
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