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In the present paper, we continue to study some features of the mixed
type p-adic A-Ising model which was studied in [3]. In that study, the exis-
tence of the p-adic Gibbs measures and phase transitions were investigated
for the model on the Cayley tree of order two. In the current paper, we
study the dynamical behavior of the fixed points which have been found
in [3]. As the main result, we proved that the fixed point ug is an attractor
and the other fixed points u; o are repellent fixed points for the mixed type
p-adic A-Ising model. In addition, the size of basin of attractor for the fixed
point ug is described.
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1. Introduction

The p-adic numbers were firstly described by German mathematician
K. Hensel, and they have been attracting interest of scientists since then. By
now, many theoretical and practical applications have being studied in the p-
adic field. Also some features of dynamical behavior of a dynamical system were
studied in [2,7,10,13,17].

A number of scientists applied renormalization techniques in statistical me-
chanics, and they got lots of interesting results. As consequences of such results
about phase transitions of spin models on hierarchical lattices represented that
they make the exact calculation of multifarious physical quantities [1,5]. One of
these useful hierarchical lattices is a Cayley tree or a Bethe lattice (see [19]). The
lattice is not real but it provides to do some certain calculations of many physical
quantities. And it helps to construct corresponding dynamical systems for many
complicated models [21].

Renormalization methods were widely applied to study the Ising model [1].
At the same time, one of the generalizations of the Ising model is the so-called
A-model on the Cayley tree (see [11,20]). In [3], we combined these two most
studied models and called “p-adic A-Ising model”. In the same work we proved the
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existence and uniqueness of this kind of p-adic quasi Gibbs measures. Moreover,
we proved the occurrence of the phase transition according to the p-adic A-Ising
model.

Currently, we continue studying different aspects of this model. In [3], we
obtained a dynamical function and got three fixed points ug, u1 2. In the present
paper, we will explore dynamical behavior of these fixed points.

As the main result of this paper, we have proved that ug is an attractor and
up 2 are repellent fixed points for the mixed type p-adic A-Ising model on the
Cayley tree of order two.

The result is obtained for the p-adic case. However, it is not valid for the real
case.

2. Preliminaries

2.1. p-adic numbers. Suppose that p is a fixed prime number. The set @,
is defined as a completion of the rational numbers Q with the norm |- |, : Q —

R given by
p", x#0
’x‘p = )
0, z=0

where z = p"* with r,m € Z,n € N, (m,p) = (n,p) = 1. The absolute value | - |,
is called non-Archimedean norm, and it satisfies the strong triangle inequality
|2+ ylp < max{|z(p, [y[p}-

This is the most crucial property of the norm, i.e., if |z[, > |y|p, then |z +
ylp = |z|p. Notice that this very useful feature can be employed only in the
non-Archimedean norm.

Any p-adic number x € Qp, x # 0 is uniquely represented in the form

z=p" @ (xo+ z1p+ 22p? + ), (2.1)

where v = y(x) € Z and z; are integers, 0 < z; <p—1,29 >0, j=0,1,2,...,
in the case |z|, = p77®).
We recall that the p-adic integers set is

Ly ={r € Qp: |x], <1}.

And a p-adic exponential function is defined by

o0 n

exp,(r) = Z %

n=1
and is convergent for every z € B(0,p~Y/®=1). Tt is known [9] that for any = €
B(0,p~Y®=1) one has
|epr<.’13)|p = 17 ‘epr(x) - 1‘17 = "T|P <L

Let
E={reQ,:|x—1|,<p /Py (2.2)
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Lemma 2.1 ([18]). The set &, has the following properties:

1. &, is a group under multiplication.
2. la—0l, <1 foralla,beé,.

3. Ifa,be&,, then it holds

4. Ifa € &y, then there is an element h € B(0,p~ /P~ such that a = exp,(h).

5. Letxz,y € Qp. If lzyl, =1 and |z +yl, < 1, then |z|p, = |y|, = 1.

2.2. p-adic measure. Assume that (X, B) is a measurable space, where B
is an algebra of subsets of X. A function p : B — Q, is called a p-adic measure
if the equality

((Un) = 2w

holds for any A, ..., A, C B such that A;NA; =0 (i # j).
A p-adic measure is called a probability measure whenever u(X) = 1.

2.3. Cayley tree. Let I'* = (V, L) be a semi-infinite Cayley tree of order
k > 1 with the root 2(?). Here, the set of all vertices is V and the set of all edges is
L. A collection of the pairs (z,x1),...,{(x4_1,y) is called a path from the vertex
x to the vertex y. The distance d(z,y),x,y € V, on the Cayley tree is the length
of the shortest path from x to y. The vertices z and y are the nearest neighbors
denoted by | = (z,y) if d(x,y) = 1. Two vertices x,y € V are considered as the
next-nearest neighbors if d(z,y) = 2. The next-nearest-neighbors vertices x and
y are the prolonged next-nearest neighbors if x € W,,_s and y € W,, for some
n > 1, which are shown by )z, y(, and called one-level next-nearest-neighbors if
x,y € W, for some n and shown by )7, 7(.

Wn:{xEV: d(x,x(o)):n}, V, = U Wins
L,={l=(x,y)eL: z,yeV,}.
The direct successors set of x is defined by

S(x) ={y € Wyy1: d(z,y) =1}, x € W,.
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2.4. Dynamical systems in Q). In this subsection, we remind some stan-
dard notions of dynamical systems. Let r,s > 0 s.t. r < s, and a € Q,. Then we
define the p-adic balls and a p-adic sphere as follows:

B.(a)={ze€Qp: |z—a|, <r}, Br(a)={z€Qp:|z—al, <r}. (2.3)
Bi(a)={ze€Qp: r<|z—a|lp<s}, Sp(a)={zecQp:|lx—al,=r} (2.4)
It is obvious that B,(a) = B,(a) U S,(a).

If any function f : B,(a) — Qp, which converges uniformly on the ball B,(a),
can be represented by

0= W0y feq,
n=0 ’

then it is said to be analytic.

Letting a dynamical system (f, B) in Q,, where f : x € B — f(x) € B, be an
analytic function and B = B,(a) or Q,. Denote 2™ = f*(2(®)), where 2° € B
and f*(z) = fo---o f(z). If f(2(@) =2 then 2(© is said to be a fixed point.

—_———

n
A fixed point 2(® is called an attractor if there exists a neighborhood
U(z@)(c B) of 29 such that for all points y € U(z(?)) it holds lim, . 3" =
20 where y* = f*(y). If (9 is an attractor, then its basin of attraction is

A ={yeQ,: v = 29, as n — oo}

A fixed point z(© is said to be a repellent if there exists a neighborhood
U(z®) of (0 such that |f(z) — 20|, > |z — 2O, for x € U(2®), z # 2.

For a fixed point (%) of a function f(z) a ball B,(z(?)) (contained in B) is said
to be a Siegel disc if each sphere Sp(x(o)), p < r,is an invariant sphere of f(x),
ie., if z € S,((@), then all iterated points 2™ € S,(2(9) for all n = 1,2....
The union of all Siegel discs with the center at z(©) is said to be a maximum
Siegel disc and it is denoted by SI(z(?).

In other words, let 2(°) be a fixed point of an analytic function f(z). Then

d
)
A= d:cf(x ).

It is clear that X is a usual derivative of f at z(?). Therefore, the point z(?
is attractive whenever 0 < ||, < 1, neutral whenever ||, = 1, and repellent
whenever |A|, > 1.

3. Construction of p-adic Gibbs measure and dynamical func-
tion

In this section, we deal with the mixed type p-adic A-Ising model where spins
take values {1}, and these values are assigned to the vertices of the Cayley tree
I' = (V,L). A configuration o on V is defined as a function of 0 : € V —
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o(x) € ®; in a similar manner one defines configurations o, and w on V,, and
W, respectively. The set of all configurations on V' (respectively V,,, W),) is the
same with Q = ®V (respectively Qy, = ®"» Q= ®Wn) and it is easy to see
that Qy, = Qy,,_, X Qw,,. Due to the given configurations o, € Qy;, , and w €
Qw,,, their concatenation is defined by

n-1(z), wh Vo
(On—1Vw)(z)= on-1(x), whenever x € .
w(z), whenever x € W,

It is obvious that o,,—1 Vw € Qy;,.
AP x & — Q, is a function defined on each edge (z,y) € L. However, the
Hamiltonian of the p-adic A-Ising model can be defined by

Ho(o)= Y. No(@),o()+J > a(@)aly), (3.1)
Y,y

<£E,y>€Ln

where H), : Qy,, — Q.

In what follows, we suppose that |A(z,y)|, < 1/p and [J|, < 1/p (p > 3).
These conditions guarantee the existence of exp,(Hy(c)) for alln € Nand 0. h:
e V\{zD} = h, Q, is a mapping. For any n € N, a p-adic probability

measure Mﬁn) on the entire configuration Qy;, is

() y_ L o ()
[, (@—Wexpp(ﬂn(o)) IT ). (3.2)
TL,h QJGWn

Here, 0 € Qy;,, and Zéh}z is the related function called a partition function and
given by

Z0 = > expy(Ha(@) T] (). (3.3)

Uern zeEWn

Remember [12] that one of the main results of the theory of probability
concerns a construction of an infinite volume distribution with given finite-
dimensional distributions, which is a well-known Kolmogorov’s Extension Theo-
rem [23]. Recall that a p-adic probability measure p on € is compatible if one
holds

plo e Q:oly, =op) = ,ufin)(on) for all o, € Qy;,, n € N. (3.4)

The existence of the measure p is guaranteed by Kolmogorov’s theorem [4,8].

Namely, if the measures ,ugln), n > 1 satisfy the compatibility condition, i.e.,

S i (onor V) = " (00) (3.5)

wGQWn

for any op,—1 € Qy;,_,, then there is a unique p-adic Gibbs measure p on €2 with
(3.4).

Now, following [12], if the measures uiln) satisfy the compatibility condition for
a function h, then there is a unique p-adic probability measure, which is denoted
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by pn. The measure uy, is said to be a p-adic quasi Gibbs measure corresponding
to the p-adic A-Ising model. By QG(H), we denote the set of all p-adic quasi
Gibbs measures associated with functions h = {h,, = € V}.

Theorem 3.1. The measure ,u,(ln)(an), n = 1,2,..., satisfies Kolmogorov’s
consistency condition (3.5) if and only if the following equations hold for any
xeV:

D Faylhy, M), (3.6)
y€eS(z)

and

2 a*0?h2h? + ab(h2 + h2) + b%6°
T 202h2h + cd(h2 + h?) 4 d26?

(3.7)

where a = exp,(A(1,1)), b = expp()\(l,—l)), c = expp()\(—l,l)), d =

(
exp, (A(—=1,~-1)), 0 = exp, (J).

Proof. Necessity. Assume that (3.5) holds; we want to obtain (3.7). We
substitute (3.2) in (3.5) and hence, for any configuration 0,1 € Qy;,, we get

Zglzexpp[ S Ayo@ow)+7 Y ol@oly) + tham}

o(n) (z,y)ELn Yo,y ( TEW,
z,y€Wnp,
SEAD SN D DR EERI0)
o(n) (z,y)ELn—1

+J > o@ely)+ > hxa(m)].

),y z€Wn—1
'r7yeWn—1
It yields that

epr Un 1 H H xy, (z U(y) U(I)G(y)

T€Wn_2 yeS(x)

=L, Zexpp[ (On-1) Z Z)\y (y))

n€Qw,, x€EWp_1 yeS(x)
(Jv)n(y)
+J Z ] H H hay, U(:v)n(y) :
yzej’ x) x€EWpn—1 yeS(x)
Y#£z

From here we get

Zgj(z)expp[ Yo D daglo(@)o)+J Y

r€EWn_1yeS(x) y,2€8(x)
y7#z
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+ Z hyo( ]: H expy, (hzo()).

yeS(x) x€EWn_1
Then, we find
1
G S e [ > Aylola)ow)
z€Wn_1yeS(x) o(y)e£l x€EWp_1
+J Z z) + hyo(y )] = H exp,(hgyo(z)).
y,2€5(x) r€Wn_1
y#£z
In the equation above, if we substitute o(z) = 1 and o(z) = —1 respectively,

then, after dividing the corresponding equations by each other, we get equation
(3.7), which means that (3.6) holds.

Sufficiency. Assume that (3.6) is valid. Then it implies the existence of a(x) €
Qp such that

I > eo [A(a@),&(y))

yeS(z) 5(y)e{+1}

+J ) an(z) +6()hy| = a(z) exp,(o(z)ha),  (3.8)
z€S(x)

27y
n(z)ed

where o(z) € {£1}. From the last equality, one gets

I I X ew [A(o(w),é(y))

z€Wn_1 yeS(z) 5(y)e{£1}

Y &<y>n<z>+&<y>hy] = ] al@)esp,(o@hs). (3.9)
z€S5(x) zeEWn_1

27FY
n(z)ed

Now, multiplying both sides of (3.9) by exp, (H,-1(c)) and denoting

Ap(@) = ] al@), (3.10)
xeWp,
we get
Uy exp, (H H H Ny (@)l a(x)o(y)

~ exp, (. H I I Y e

2€Wn—2 yeS(z) z€5(y) n(z)e{+1}
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+J > ayn(z) + 5 (y)hy|.

zeS(x)
Z#Y
n(z)ed
From (3.2) it follows that
Up 1 2 " (o Z“OZN (o V). (3.11)

(n)

Since the measure py;, 7, (n > 1) is a probability measure for each n € N, i.e.,

S o= Y Y v =1

o€Qy, O’EQV —1 nEQWn

n—1

Hence, from (3.11) we obtain

Z™ =y, 7™ (3.12)
(3.11) and (3.12) imply (3.5). The proof is completed. O

This proof yields the uniqueness of the p-adic quasi Gibbs measures for our
model.

In this study, our main goal is to analyze the p-adic dynamical behavior of the
fixed points of the dynamic function (3.7). And the existence of three non-trivial
fixed points belonging to the model was proved in [3].

Recall that a function h = {h; },cy\ (503 is called translation-invariant if h, =
h, for all z,y € V. A p-adic Gibbs measure pp, corresponding to a translation-
invariant function h, is called a translation-invariant p-adic quasi Gibbs measure.

By Theorem 3.1, we reduced the existence of translation-invariant p-adic quasi
Gibbs measures to the solutions of equation (3.7). In generally, solutions of such
kind of equations are very complicated. Therefore, firstly we need to reduce the
equation to the simplest form possible. Then we suppose that h, = h, = h, = h
since h is translation invariant for all x,y,z € V. Therefore we rewrite equation
(3.7) as following:

5 a?0?h* + 2abh? + b26?
202ht + 2cdh? + d262°

For more simplicity of (3.13), let h2 = u = f(u). Then the last equation is
reduced to the following function, and we call it a dynamical function:

(3.13)

a202u? + 2abu + b%62

flu) = 20242 + 2cdu + d20?°

(3.14)

where a,b,c,d,0 € £,. Now we need to analyze fixed points of (3.14).

Lemma 3.2. Let p > 3, then for any a,b € &, one has |a + 1|, =1, |a +
bl =1.

The proof is obvious from strong triangle inequality.
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3.1. Uniqueness of p-adic quasi Gibbs measures. Due to [6], the fol-
lowing lemma guarantees the existence of at least one solution of the dynamical
function (3.14) for the mixed type A-Ising model.

Lemma 3.3 ([3]). Letp > 3, a,b,c,d,0 € E,, and [ be as given in (3.14).
1. The function f has a unique fized point ug € &p.

2. Then f(&) C & and |f(u) — f(v)|p < %|u —vlp for all u,v € &,.

For the proof, we suggest you to refer to [3].

Hence the function f satisfies the Banach contraction principle. This proof
guarantees the existence of a unique fixed point ug of f in &,. By using the results
of [14,15], we can state the following theorem.

Theorem 3.4. If p > 3 and a,b,c,d,0 € &,, then there exists a unique
translational invariant p-adic quasi Gibbs measure g associated to the unique
fized point ug for the model (3.1) on Cayley tree of order two.

Now we need to study other fixed points of (3.14) if they exist. For simplicity,
let us assume that b = A\(1,—1) = A(—1,1) = ¢ and let us take it as b. Then we
rewrite (3.14) as follows:

b20%u 4 (2bd — a*0%)u? + (d*6% — 2ab)u — b*0* = 0, (3.15)

where a,b,d, 0 € £,. Moreover, by Lemma 3.3, there exists at least one fixed point
ug € &, . Therefore we can write (3.15) in the form

(u — ug) (b*6*u* + Au+ B) = 0, (3.16)

where A = 2bd + b%6%uy — a’6? and B = % since ug is a fixed point of (3.14).
To find other fixed points of (3.16), which are different from ug, we need to
analyze
2bd + b260%uy — a?6? 1
2 _
where a,b,d, 6, up € £,. To find out all fixed points of (3.16), let us perform the
results developed in [22]. Therefore, we rewrite (3.17) in the form

u? +eu = f, (3.18)
where e = W and f = _u%)? a,b,d,0,uy € €. And the discriminant
of (3.18) is A = €2 + 4f.

To find other fixed points of (3.18) in Q,, we will need the proposition below
without the proof.

Proposition 3.5 ([3]). Let p > 3 and assume that VA = /e2 + Af erists,

where e = W, f= —ui, and a,b,d,0,uy € E,. Then equation (3.18)

has two fized points w12 € Q, which are different from ug € &p.
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Due to [3], we get easily two fixed points u;2 € Q, which are different from
Uy € Sp,

uyp = %(—64— VA), uy = %(—e —VA). (3.19)

And the conditions |u1a|, = 1, \/[A], < 1 and |u1s — 1|, = e £ VA +2[, = 1
hold.

Now, we are ready to study the dynamical behavior of the fixed points of
(3.14).

4. Dynamical behavior of the fixed points

In this section, we are going to investigate the p-adic norm of the dynamic
system at the fixed points up and u12. Due to the notion of dynamical system
in Qp, the point 2 is called attractive if 0 < |Al, < 1, neutral if |A|, = 1, and
repellent if |\, > 1, where A is a usual derivative of the dynamical function.

To study the dynamical behavior of the fixed points ug, 11 2 under the dynamic
function (3.14), we need to find the derivative of (3.14). After that we are going
to check the boundedness of the derivative of (3.14) at the fixed points ug, u1 2.

Firstly, before stating the main theorem, we need the following lemma:

Lemma 4.1. Let p > 3, a,b,c,d,0 € §, and u12 € Q, — &,. Then |ui2 +
1, <1 and |uilp = |ual, = 1.

Proof. From Proposition 3.5 and the strong triangle inequality, we get

—2bd — b202ug + 262 + b202V/ A + 25262

ure +1fp = |

2b26? I
[ =2(bd — 1) — (b?6%ug — 1) + (a?6% — 1)|,
B 26202,
N 1b20%V A +2(0%6% — 1), _ 1
120262, p’
and from (3.19), we get |u1], = |ua|, = 1. O

Now we are ready to state the main theorem.

Theorem 4.2. Let p > 3 and a,b,c,d,0 € &,. Then the p-adic dynamical
function (3.14) has three fized points which are uy € £, and u1 2 € Q, — &, under
the condition b = exp,(A(1,—1)) = exp,(A(—1,1)) = ¢, and

(i) wo is an attractor;
(ii) w12 are repellent.

Proof. From Lemma 3.3 and Proposition 3.5, the dynamical function (3.14)
has three fixed points which are ug € &, and u1 2 € Q, — &,. In here, to prove (i)
and (ii), let

a?60?u? + 2abu + b26?

= 4.1
b20%u? + 2bdu + d?62’ (41)

f(u)
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where a,b,d, 0 € &,. If we find X\ = %, then we get

f(u) = 2[(a®bd6? — ab®0?)u? + (a?d?0® — b*0*)u + abd?6? — b>d6?] (4.2)
- (26202 + 2bdu + d262]2 : .

Hereafter, to prove (i) and (ii), we are going to check the p-adic norm of A =
f(u) at ug,ug 2.
(i) Let us plug ug in (4.2). Then we get

Alug = f/ (uo)
(a20d6? — ab®02)ul + (a2d20% — b*0%)ug + abd?0? — b3d6?
[b2602ud + 2bdug + d%62)?
(a?bd6? — 1 — (ab?0? — 1))ud + (a®d?6? — 1 — (b*0* — 1))ug
(6262 — 1)ud + ud + 2(bd — 1)ug + up + d26% — 1 + 1]2
abd?0® — 1 — (3dp? — 1)

2 . 4.3
* (62602 — 1)u? + ud + 2(bd — 1)ug + up + d26% — 1 + 1]? (43)
From here, taking the p-adic norm of (4.3), we obtain
5 oy <5 <1
o, < =
"
since 2], = 1 and |up + 1|, = 1.
Then ug is an attractor.
(ii) Let us plug u1 2 in (4.2). Then we get
)"m,z = f/(ul,Q)
(a®bd0? — ab®6?)u? 5 4 (a*d?6% — b*0*)uy 5 + abd?0? — b3 d6?
- [0260%u3 , + 2bdu 2 + d?62]?
(a®bd6® — 1 — (ab*0* — 1))ui 5 + (a*d*0* —1 — (b0* — 1))u1 o
T (b262 — Dui o +uf 5 +2(bd — Vu1p 4 uy g + d262 — 1+ 1]2
bd?6% — 1 — (b3dH? — 1
+2 “ ( ) (4.4)

(0262 — D)ui 5 + ufy + 2(bd — Vuy g +ur 2 + d26? — 14+ 12
Since

(0207 — 1)ufy + ufy +2(bd — Durg +ur g+ d?6° — 14+ 1], = [ur2 + 1,
taking the p-adic norm of (4.4), we obtain
1 (ur2)lp > p* > 1

from Lemma 4.1 and the strong triangle inequality.
In this case, we conclude that u; 2 are repellent. ]
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Then, as a conclusion, we state that the fixed point ug is an attractor and the
other fixed points u1 2 are repellent.
Now we are going to describe the basin of attraction of the fixed point uy,

Aluwg) ={u e Qp: f"(u) = up}.

Let
B={ue€Si(u): Ing eN f"(x) € K},

where K = {u € S1(uo) : |up — 1], < 1}.
One can see that
B= ( U f‘"(K)> () S1(uo). (4.5)
n>1

Now we are going to describe the size of an attractor of the dynamic function as
in [16].

Theorem 4.3. Let a,b,d,0 € £,. Then the following statements hold:
(i) Ifp>3, VA= \/(W)z - 4%, then one has

A(ug) = BU(Qp \ S1(uo)) U Bi(0).

(ii) Otherwise, A(up) = Q.

Proof. (i) Due to Lemma 3.3, for any u € &, we infer that u € A(ug), which
means that &, C A(ug). We notice that &, = Bi(up).

Consider several cases.

(I) Assume that |u|, < 1, i.e., uw € B1(0). Now, let us examine | f(u) |, and
| f(u) —1|p. One can see that

[(a260? — 1)u? + u? + 2(ab — V)u + 2u + (b?02 — 1) + 1],

| f(u) |p = |(b292 _ 1)u2 + 12 _|-2(bd— 1)u+2u+ (d292 — 1) + 1|P
_ |u—&—1|12J _
\u-ﬁ—ﬂ% ’
and
202 _ 120202 + 2(ab — bd b202% — 262
-1, =1 Ju? +2(ab — bdju + b,

lu+1]2
which imply f(u) € &,. Hence, u € A(ug), which means that B;(0) C A(ug). So,
By (O) U gp C A(UO)

(IT) Now assume that |u|, > 1 taking into account that u ¢ Si(ug). Then we
have
CJu+t 12 -

7l = g =1
p
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and since

max{|(a®0” — 1)u?|y, |(0%07 — |y} < [ulp and  Ju+ 13 = |ul,

we obtain
|(a%60? — b?0%)u? + 2(ab — 1)u — (bd — 1)u + b20% — d%6?|,
| f(u)—1 |p = 2
|u + 1\p
a — 1lu* — u® +u® + 2(ab — u+ —
- 202 2 62(92 2 2 b bd 6292 d202 »
- lu+ 1|2
_ max{|(a0® = Du}, [(1%6° — Du?ly} _

Jul?

which means f(u) € &. So, u € A(ug).
Consequently, if |ul, > 1, then u € A(up).
(IIT) Let us consider |u|, = 1. Then

_ |u—i—1|227 _
lu+ 12 ’

[/ ()l

and since

max{|(a?6* — 1)u?|,, |(0*0* — 1)u?|,} < \u|12, =1 and |u+ 1|129 = |u]12) =1,

(%602 — b260%)u? + 2(ab — 1)u — (bd — 1)u + b*6% — d?6?,

— 11, =
‘f(u) ’P ’u 4 1’;[27
_ (a*6* — 1)u® — (56°)u” + w® + 2(ab — bd)u + b*6* — d*¢°|,
lu+ 12
_ max{|(a*0* — D[y, |(0°0° — 1)u?]p} <1

Jul3

Hence one gets f(u) € &, so u € A(ug).
Therefore, we have

BU(Q,\ S1(z0)) UB1(0) C A(xo).

Now assume that v ¢ BU (Q), \ Si(up)) U B1(0). Due to (4.5), it yields that
f™"(u) ¢ K for all n € N. This means that

) =1 £ 1, neN. (4.6)

If f"(u) — up as n — oo, then from (4.6) one finds |f"(u) — 1|, < 1, which is a
contradiction. Therefore, we infer that u ¢ A(up). So,

A(ug) € BU (@ \ S1(uo)) U Bi(0).

This completes the part (i).
(ii) The proof of this part immediately follows from (i). O
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5. Conclusions

In [3], it is proven that the p-adic A\-Ising model has three fixed points, which
means that in the model there exist three transition invariant p-adic quasi Gibbs
measures on the Cayley tree of order two. In this work, we continued the inves-
tigation of the dynamical properties of these fixed points.

As a main result of this paper, we proved that the p-adic norm of the derivative
of the dynamical function (3.14) are | (ug)|, < 1 and |f (u12)|, > 1 at the fixed
points. Hence, ug is an attractor and wu o are repellent fixed points. Moreover,
we described the size of the basin attractor of the fixed point, ug.

Acknowledgments. The author thanks the reviewer for precious comments
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IIpo nuuHaMivyHy TOBEAIHKY p-aJIMYHOI \-i3iHTOBOI
MmojieJii Ha JepeBi Keiisi
Mutlay Dogan

Y nmamiit ctaTTi MM TIPOJOBXKYEMO BUBYEHHS JIETKUX BJIACTUBOCTEH P-
aJIMIHOT A-131HroBOT MOJIesIi 3MimaHoro THIly, Mo Busvasacs B [3]. ¥ Tiit po-
6ori icayBanus p-aguanux mip [i6ca i hazoBux mepexoiB TOCTIIKYBAJIOCs
B Mozeni Ha gepesi Keitni apyroro mopsimka. ¥ ganiit ctarTi MU BHBYaEMO
JMMHAMITHY TIOBEJIHKY HEPYXOMUX TOUOK, sIKi Oys10 3HaimeHo B [3]. OcHoBHEM
pPe3yJIbTaTOM € Te, IO MU JIOBEJIU, II0 HEPYXOMa TOYKA Uy € aTPAKTOPOM,
a iHmi HepyxoMi TOYKM Ui PENEJEHTHUMU HEPYXOMHUMHU TOUYKAMHU IS P-
aMIHOI A-13iHrOoBOI Mojesi 3Mmimanoro tumny. Ha jiomaTok ommcaso po3mip
OaceifHy aTpakTOpa JJisi HePyXOMOI TOYKHA Ug.

KirrowoBi ciioBa: p-autdHi 9ucia, p-ajandna kBasimipa ['i60ca, quHamiTHi
cucremu, jgepeso Keii.
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