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In the present paper, we continue to study some features of the mixed
type p-adic λ-Ising model which was studied in [3]. In that study, the exis-
tence of the p-adic Gibbs measures and phase transitions were investigated
for the model on the Cayley tree of order two. In the current paper, we
study the dynamical behavior of the fixed points which have been found
in [3]. As the main result, we proved that the fixed point u0 is an attractor
and the other fixed points u1,2 are repellent fixed points for the mixed type
p-adic λ-Ising model. In addition, the size of basin of attractor for the fixed
point u0 is described.
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1. Introduction

The p-adic numbers were firstly described by German mathematician
K. Hensel, and they have been attracting interest of scientists since then. By
now, many theoretical and practical applications have being studied in the p-
adic field. Also some features of dynamical behavior of a dynamical system were
studied in [2, 7, 10,13,17].

A number of scientists applied renormalization techniques in statistical me-
chanics, and they got lots of interesting results. As consequences of such results
about phase transitions of spin models on hierarchical lattices represented that
they make the exact calculation of multifarious physical quantities [1, 5]. One of
these useful hierarchical lattices is a Cayley tree or a Bethe lattice (see [19]). The
lattice is not real but it provides to do some certain calculations of many physical
quantities. And it helps to construct corresponding dynamical systems for many
complicated models [21].

Renormalization methods were widely applied to study the Ising model [1].
At the same time, one of the generalizations of the Ising model is the so-called
λ-model on the Cayley tree (see [11, 20]). In [3], we combined these two most
studied models and called “p-adic λ-Ising model”. In the same work we proved the
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existence and uniqueness of this kind of p-adic quasi Gibbs measures. Moreover,
we proved the occurrence of the phase transition according to the p-adic λ-Ising
model.

Currently, we continue studying different aspects of this model. In [3], we
obtained a dynamical function and got three fixed points u0, u1,2. In the present
paper, we will explore dynamical behavior of these fixed points.

As the main result of this paper, we have proved that u0 is an attractor and
u1,2 are repellent fixed points for the mixed type p-adic λ-Ising model on the
Cayley tree of order two.

The result is obtained for the p-adic case. However, it is not valid for the real
case.

2. Preliminaries

2.1. p-adic numbers. Suppose that p is a fixed prime number. The set Qp
is defined as a completion of the rational numbers Q with the norm | · |p : Q →
R given by

|x|p =

{
p−r, x 6= 0

0, x = 0
,

where x = pr mn with r,m ∈ Z, n ∈ N, (m, p) = (n, p) = 1. The absolute value | · |p
is called non-Archimedean norm, and it satisfies the strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p}.

This is the most crucial property of the norm, i.e., if |x|p > |y|p, then |x +
y|p = |x|p. Notice that this very useful feature can be employed only in the
non-Archimedean norm.

Any p-adic number x ∈ Qp, x 6= 0 is uniquely represented in the form

x = pγ(x)(x0 + x1p+ x2p
2 + · · · ), (2.1)

where γ = γ(x) ∈ Z and xj are integers, 0 ≤ xj ≤ p − 1, x0 > 0, j = 0, 1, 2, . . . ,
in the case |x|p = p−γ(x).

We recall that the p-adic integers set is

Zp = {x ∈ Qp : |x|p ≤ 1} .

And a p-adic exponential function is defined by

expp(x) =
∞∑
n=1

xn

n!

and is convergent for every x ∈ B(0, p−1/(p−1)). It is known [9] that for any x ∈
B(0, p−1/(p−1)) one has

| expp(x)|p = 1, | expp(x)− 1|p = |x|p < 1.

Let
Ep = {x ∈ Qp : |x− 1|p < p−1/(p−1)}. (2.2)
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Lemma 2.1 ([18]). The set Ep has the following properties:

1. Ep is a group under multiplication.

2. |a− b|p < 1 for all a, b ∈ Ep.

3. If a, b ∈ Ep, then it holds

|a+ b|p =

{
1
2 if p = 2

1 if p 6= 2
.

4. If a ∈ Ep, then there is an element h ∈ B(0, p−1/(p−1)) such that a = expp(h).

5. Let x, y ∈ Qp. If |xy|p = 1 and |x+ y|p < 1, then |x|p = |y|p = 1.

2.2. p-adic measure. Assume that (X,B) is a measurable space, where B
is an algebra of subsets of X. A function µ : B → Qp is called a p-adic measure
if the equality

µ

( n⋃
j=1

Aj

)
=

n∑
j=1

µ(Aj)

holds for any A1, . . . , An ⊂ B such that Ai ∩Aj = ∅ (i 6= j).

A p-adic measure is called a probability measure whenever µ(X) = 1.

2.3. Cayley tree. Let Γk+ = (V,L) be a semi-infinite Cayley tree of order
k ≥ 1 with the root x(0). Here, the set of all vertices is V and the set of all edges is
L. A collection of the pairs 〈x, x1〉, . . . , 〈xd−1, y〉 is called a path from the vertex
x to the vertex y. The distance d(x, y), x, y ∈ V , on the Cayley tree is the length
of the shortest path from x to y. The vertices x and y are the nearest neighbors
denoted by l = 〈x, y〉 if d(x, y) = 1. Two vertices x, y ∈ V are considered as the
next-nearest neighbors if d(x, y) = 2. The next-nearest-neighbors vertices x and
y are the prolonged next-nearest neighbors if x ∈ Wn−2 and y ∈ Wn for some
n ≥ 1, which are shown by 〉x, y〈, and called one-level next-nearest-neighbors if
x, y ∈Wn for some n and shown by 〉x, y〈.

Wn =
{
x ∈ V : d(x, x(0)) = n

}
, Vn =

n⋃
m=0

Wm,

Ln = {l = 〈x, y〉 ∈ L : x, y ∈ Vn} .

The direct successors set of x is defined by

S(x) = {y ∈Wn+1 : d(x, y) = 1} , x ∈Wn.
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2.4. Dynamical systems in Qp. In this subsection, we remind some stan-
dard notions of dynamical systems. Let r, s > 0 s.t. r < s, and a ∈ Qp. Then we
define the p-adic balls and a p-adic sphere as follows:

Br(a) = {x ∈ Qp : |x− a|p < r}, B̄r(a) = {x ∈ Qp : |x− a|p ≤ r}. (2.3)

Br(a) = {x ∈ Qp : r < |x− a|p < s}, Sr(a) = {x ∈ Qp : |x− a|p = r}. (2.4)

It is obvious that B̄r(a) = Br(a) ∪ Sr(a).
If any function f : Br(a)→ Qp, which converges uniformly on the ball Br(a),

can be represented by

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, f ∈ Qp,

then it is said to be analytic.
Letting a dynamical system (f,B) in Qp, where f : x ∈ B → f(x) ∈ B, be an

analytic function and B = Br(a) or Qp. Denote x(n) = fn(x(0)), where x0 ∈ B
and fn(x) = f ◦ · · · ◦ f(x)︸ ︷︷ ︸

n

. If f(x(0)) = x(0), then x(0) is said to be a fixed point.

A fixed point x(0) is called an attractor if there exists a neighborhood
U(x(0))(⊂ B) of x(0) such that for all points y ∈ U(x(0)) it holds limn→∞ y

n =
x(0) where yn = fn(y). If x(0) is an attractor, then its basin of attraction is

A(x(0)) = {y ∈ Qp : yn → x(0), as n→∞}.

A fixed point x(0) is said to be a repellent if there exists a neighborhood
U(x(0)) of x(0) such that |f(x)− x(0)|p > |x− x(0)|p for x ∈ U(x(0)), x 6= x(0).

For a fixed point x(0) of a function f(x) a ball Br(x
(0)) (contained in B) is said

to be a Siegel disc if each sphere Sρ(x
(0)), ρ < r, is an invariant sphere of f(x),

i.e., if x ∈ Sρ(x(0)), then all iterated points x(n) ∈ Sρ(x(0)) for all n = 1, 2 . . . .
The union of all Siegel discs with the center at x(0) is said to be a maximum
Siegel disc and it is denoted by SI(x(0)).

In other words, let x(0) be a fixed point of an analytic function f(x). Then

λ =
d

dx
f(x(0)).

It is clear that λ is a usual derivative of f at x(0). Therefore, the point x(0)

is attractive whenever 0 ≤ |λ|p < 1, neutral whenever |λ|p = 1, and repellent
whenever |λ|p > 1.

3. Construction of p-adic Gibbs measure and dynamical func-
tion

In this section, we deal with the mixed type p-adic λ-Ising model where spins
take values {±1}, and these values are assigned to the vertices of the Cayley tree
Γk+ = (V,L). A configuration σ on V is defined as a function of σ : x ∈ V →
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σ(x) ∈ Φ; in a similar manner one defines configurations σn and ω on Vn and
Wn, respectively. The set of all configurations on V (respectively Vn, Wn) is the
same with Ω = ΦV (respectively ΩVn = ΦVn , ΩWn = ΦWn) and it is easy to see
that ΩVn = ΩVn−1 ×ΩWn . Due to the given configurations σn−1 ∈ ΩVn−1 and ω ∈
ΩWn , their concatenation is defined by

(σn−1 ∨ ω)(x) =

{
σn−1(x), whenever x ∈ Vn−1

ω(x), whenever x ∈Wn

.

It is obvious that σn−1 ∨ ω ∈ ΩVn .
λ : Φ × Φ → Qp is a function defined on each edge 〈x, y〉 ∈ L. However, the

Hamiltonian of the p-adic λ-Ising model can be defined by

Hn(σ) =
∑

〈x,y〉∈Ln

λ(σ(x), σ(y)) + J
∑
〉x,y〈

σ(x)σ(y), (3.1)

where Hn : ΩVn → Qp.
In what follows, we suppose that |λ(x, y)|p ≤ 1/p and |J |p ≤ 1/p (p ≥ 3).

These conditions guarantee the existence of expp(Hn(σ)) for all n ∈ N and σ. h :

x ∈ V \ {x(0)} → hx ∈ Qp is a mapping. For any n ∈ N, a p-adic probability

measure µ
(n)
h on the entire configuration ΩVn is

µ
(n)
h (σ) =

1

Z
(h)
n,h

expp(Hn(σ))
∏
x∈Wn

(hx)σ(x) . (3.2)

Here, σ ∈ ΩVn , and Z
(h)
n,h is the related function called a partition function and

given by

Z
(h)
n,h =

∑
σ∈ΩVn

expp(Hn(σ))
∏
x∈Wn

(hx)σ(x) . (3.3)

Remember [12] that one of the main results of the theory of probability
concerns a construction of an infinite volume distribution with given finite-
dimensional distributions, which is a well-known Kolmogorov’s Extension Theo-
rem [23]. Recall that a p-adic probability measure µ on Ω is compatible if one
holds

µ(σ ∈ Ω : σ|Vn = σn) = µ
(n)
h (σn) for all σn ∈ ΩVn , n ∈ N. (3.4)

The existence of the measure µ is guaranteed by Kolmogorov’s theorem [4,8].

Namely, if the measures µ
(n)
h , n ≥ 1 satisfy the compatibility condition, i.e.,∑

ω∈ΩWn

µ
(n)
h (σn−1 ∨ ω) = µ

(n−1)
h (σn−1) (3.5)

for any σn−1 ∈ ΩVn−1 , then there is a unique p-adic Gibbs measure µ on Ω with
(3.4).

Now, following [12], if the measures µ
(n)
h satisfy the compatibility condition for

a function h, then there is a unique p-adic probability measure, which is denoted
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by µh. The measure µh is said to be a p-adic quasi Gibbs measure corresponding
to the p-adic λ-Ising model. By QG(H), we denote the set of all p-adic quasi
Gibbs measures associated with functions h = {hx, x ∈ V }.

Theorem 3.1. The measure µ
(n)
h (σn), n = 1, 2, . . ., satisfies Kolmogorov’s

consistency condition (3.5) if and only if the following equations hold for any
x ∈ V :

hx =
∑

y∈S(x)

Fx,y(hy, λ, J), (3.6)

and

h2
x =

a2θ2h2
yh

2
z + ab(h2

y + h2
z) + b2θ2

c2θ2h2
yh

2
z + cd(h2

y + h2
z) + d2θ2

, (3.7)

where a = expp (λ(1, 1)), b = expp (λ(1,−1)), c = expp (λ(−1, 1)), d =
expp (λ(−1,−1)), θ = expp (J).

Proof. Necessity. Assume that (3.5) holds; we want to obtain (3.7). We
substitute (3.2) in (3.5) and hence, for any configuration σn−1 ∈ ΩVn , we get

Z−1
n

∑
σ(n)

expp

[ ∑
〈x,y〉∈Ln

λx,y(σ(x), σ(y)) + J
∑
〉x,y〈

x,y∈Wn

σ(x)σ(y) +
∑
x∈Wn

hxσ(x)

]

= Z−1
n−1

∑
σ(n)

expp

[ ∑
〈x,y〉∈Ln−1

λx,y(σ(x), σ(y))

+ J
∑
〉x,y〈

x,y∈Wn−1

σ(x)σ(y) +
∑

x∈Wn−1

hxσ(x)

]
.

It yields that

expp(Hn(σn−1))
∏

x∈Wn−2

∏
y∈S(x)

(
hxy,σ(x)σ(y)

)σ(x)σ(y)

= Ln
∑

η∈ΩWn

expp

[
Hn(σn−1) +

∑
x∈Wn−1

∑
y∈S(x)

λx,y(σ(x), σ(y))

+ J
∑

y,z∈S(x)
y 6=z

σ(y)σ(z)

] ∏
x∈Wn−1

∏
y∈S(x)

(
hxy,σ(x)η(y)

)σ(x)η(y)
.

From here we get

Zn−1

Zn

∑
σ(n)

expp

[ ∑
x∈Wn−1

∑
y∈S(x)

λx,y(σ(x), σ(y)) + J
∑

y,z∈S(x)
y 6=z

σ(y)σ(z)
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+
∑

y∈S(x)

hyσ(y)

]
=

∏
x∈Wn−1

expp(hxσ(x)).

Then, we find

Zn−1

Zn

∏
x∈Wn−1

∏
y∈S(x)

∑
σ(y)∈±1

expp

[ ∑
x∈Wn−1

λx,y(σ(x), σ(y))

+ J
∑

y,z∈S(x)
y 6=z

σ(y)σ(z) + hyσ(y)

]
=

∏
x∈Wn−1

expp(hxσ(x)).

In the equation above, if we substitute σ(x) = 1 and σ(x) = −1 respectively,
then, after dividing the corresponding equations by each other, we get equation
(3.7), which means that (3.6) holds.

Sufficiency. Assume that (3.6) is valid. Then it implies the existence of a(x) ∈
Qp such that

∏
y∈S(x)

∑
σ̃(y)∈{±1}

expp

[
λ(σ(x), σ̃(y))

+ J
∑

z∈S(x)
z 6=y

η(z)∈Φ

σ̃(y)η(z) + σ̃(y)hy

]
= a(x) expp(σ(x)hx), (3.8)

where σ(x) ∈ {±1}. From the last equality, one gets

∏
x∈Wn−1

∏
y∈S(x)

∑
σ̃(y)∈{±1}

expp

[
λ(σ(x), σ̃(y))

+ J
∑

z∈S(x)
z 6=y

η(z)∈Φ

σ̃(y)η(z) + σ̃(y)hy

]
=

∏
x∈Wn−1

a(x) expp(σ(x)hx). (3.9)

Now, multiplying both sides of (3.9) by expp (Hn−1(σ)) and denoting

An(x) =
∏
x∈Wn

a(x), (3.10)

we get

Un expp (Hn−1(σ))
∏

x∈Wn−2

∏
y∈S(x)

(
hxy,σ(x)σ(y)

)σ(x)σ(y)

= expp (Hn−1(σ))
∏

x∈Wn−2

∏
y∈S(x)

∏
z∈S(y)

∑
η(z)∈{±1}

expp

[
λ(σ(x), σ̃(y))



328 Mutlay Dogan

+ J
∑

z∈S(x)
z 6=y

η(z)∈Φ

σ̃(y)η(z) + σ̃(y)hy

]
.

From (3.2) it follows that

Un−1Z
(h)
n−1µ

(n−1)
h (σ) = Z(h)

n

∑
η

µ
(n)
h (σ ∨ η). (3.11)

Since the measure µ
(n)
h , (n ≥ 1) is a probability measure for each n ∈ N, i.e.,∑

σ∈ΩVn−1

µ
(n−1)
h (σ) =

∑
σ∈ΩVn−1

∑
η∈ΩWn

µ
(n)
h (σ ∨ η) = 1.

Hence, from (3.11) we obtain

Z(h)
n = Un−1Z

(h)
n−1. (3.12)

(3.11) and (3.12) imply (3.5). The proof is completed.

This proof yields the uniqueness of the p-adic quasi Gibbs measures for our
model.

In this study, our main goal is to analyze the p-adic dynamical behavior of the
fixed points of the dynamic function (3.7). And the existence of three non-trivial
fixed points belonging to the model was proved in [3].

Recall that a function h = {hx}x∈V \{x0} is called translation-invariant if hx =
hy for all x, y ∈ V . A p-adic Gibbs measure µh, corresponding to a translation-
invariant function h, is called a translation-invariant p-adic quasi Gibbs measure.

By Theorem 3.1, we reduced the existence of translation-invariant p-adic quasi
Gibbs measures to the solutions of equation (3.7). In generally, solutions of such
kind of equations are very complicated. Therefore, firstly we need to reduce the
equation to the simplest form possible. Then we suppose that hx = hy = hz = h
since h is translation invariant for all x, y, z ∈ V . Therefore we rewrite equation
(3.7) as following:

h2 =
a2θ2h4 + 2abh2 + b2θ2

c2θ2h4 + 2cdh2 + d2θ2
. (3.13)

For more simplicity of (3.13), let h2 = u = f(u). Then the last equation is
reduced to the following function, and we call it a dynamical function:

f(u) =
a2θ2u2 + 2abu+ b2θ2

c2θ2u2 + 2cdu+ d2θ2
, (3.14)

where a, b, c, d, θ ∈ Ep. Now we need to analyze fixed points of (3.14).

Lemma 3.2. Let p ≥ 3, then for any a, b ∈ Ep one has |a + 1|p = 1, |a +
b|p = 1.

The proof is obvious from strong triangle inequality.
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3.1. Uniqueness of p-adic quasi Gibbs measures. Due to [6], the fol-
lowing lemma guarantees the existence of at least one solution of the dynamical
function (3.14) for the mixed type λ-Ising model.

Lemma 3.3 ([3]). Let p ≥ 3, a, b, c, d, θ ∈ Ep, and f be as given in (3.14).

1. The function f has a unique fixed point u0 ∈ Ep.

2. Then f(Ep) ⊂ Ep and |f(u)− f(v)|p ≤ 1
p |u− v|p for all u, v ∈ Ep.

For the proof, we suggest you to refer to [3].

Hence the function f satisfies the Banach contraction principle. This proof
guarantees the existence of a unique fixed point u0 of f in Ep. By using the results
of [14,15], we can state the following theorem.

Theorem 3.4. If p ≥ 3 and a, b, c, d, θ ∈ Ep, then there exists a unique
translational invariant p-adic quasi Gibbs measure µ0 associated to the unique
fixed point u0 for the model (3.1) on Cayley tree of order two.

Now we need to study other fixed points of (3.14) if they exist. For simplicity,
let us assume that b = λ(1,−1) = λ(−1, 1) = c and let us take it as b. Then we
rewrite (3.14) as follows:

b2θ2u3 + (2bd− a2θ2)u2 + (d2θ2 − 2ab)u− b2θ2 = 0, (3.15)

where a, b, d, θ ∈ Ep. Moreover, by Lemma 3.3, there exists at least one fixed point
u0 ∈ Ep . Therefore we can write (3.15) in the form

(u− u0)(b2θ2u2 +Au+B) = 0, (3.16)

where A = 2bd+ b2θ2u0 − a2θ2 and B = b2θ2

u0
since u0 is a fixed point of (3.14).

To find other fixed points of (3.16), which are different from u0, we need to
analyze

u2 +
2bd+ b2θ2u0 − a2θ2

b2θ2
u+

1

u0
= 0, (3.17)

where a, b, d, θ, u0 ∈ Ep. To find out all fixed points of (3.16), let us perform the
results developed in [22]. Therefore, we rewrite (3.17) in the form

u2 + eu = f, (3.18)

where e = 2bd+b2θ2u0−a2θ2
b2θ2

and f = − 1
u0

, a, b, d, θ, u0 ∈ Ep. And the discriminant

of (3.18) is ∆ = e2 + 4f .

To find other fixed points of (3.18) in Qp, we will need the proposition below
without the proof.

Proposition 3.5 ([3]). Let p > 3 and assume that
√

∆ =
√
e2 + 4f exists,

where e = 2bd+b2θ2u0−a2θ2
b2θ2

, f = − 1
u0

, and a, b, d, θ, u0 ∈ Ep. Then equation (3.18)
has two fixed points u1,2 ∈ Qp which are different from u0 ∈ Ep.
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Due to [3], we get easily two fixed points u1,2 ∈ Qp which are different from
u0 ∈ Ep,

u1 =
1

2
(−e+

√
∆), u2 =

1

2
(−e−

√
∆). (3.19)

And the conditions |u1,2|p = 1,
√
|∆|p < 1 and |u1,2 − 1|p = |e ±

√
∆ + 2|p = 1

hold.
Now, we are ready to study the dynamical behavior of the fixed points of

(3.14).

4. Dynamical behavior of the fixed points

In this section, we are going to investigate the p-adic norm of the dynamic
system at the fixed points u0 and u1,2. Due to the notion of dynamical system
in Qp, the point x(0) is called attractive if 0 ≤ |λ|p < 1, neutral if |λ|p = 1, and
repellent if |λ|p > 1, where λ is a usual derivative of the dynamical function.

To study the dynamical behavior of the fixed points u0, u1,2 under the dynamic
function (3.14), we need to find the derivative of (3.14). After that we are going
to check the boundedness of the derivative of (3.14) at the fixed points u0, u1,2.

Firstly, before stating the main theorem, we need the following lemma:

Lemma 4.1. Let p > 3, a, b, c, d, θ ∈ Ep and u1,2 ∈ Qp − Ep. Then |u1,2 +
1|p < 1 and |u1|p = |u2|p = 1.

Proof. From Proposition 3.5 and the strong triangle inequality, we get

|u1,2 + 1|p = |−2bd− b2θ2u0 + a2θ2 ± b2θ2
√

∆ + 2b2θ2

2b2θ2
|p

=
| − 2(bd− 1)− (b2θ2u0 − 1) + (a2θ2 − 1)|p

|2b2θ2|p

± |b
2θ2
√

∆ + 2(b2θ2 − 1)|p
|2b2θ2|p

<
1

p
,

and from (3.19), we get |u1|p = |u2|p = 1.

Now we are ready to state the main theorem.

Theorem 4.2. Let p > 3 and a, b, c, d, θ ∈ Ep. Then the p-adic dynamical
function (3.14) has three fixed points which are u0 ∈ Ep and u1,2 ∈ Qp−Ep under
the condition b = expp(λ(1,−1)) = expp(λ(−1, 1)) = c, and

(i) u0 is an attractor;

(ii) u1,2 are repellent.

Proof. From Lemma 3.3 and Proposition 3.5, the dynamical function (3.14)
has three fixed points which are u0 ∈ Ep and u1,2 ∈ Qp−Ep. In here, to prove (i)
and (ii), let

f(u) =
a2θ2u2 + 2abu+ b2θ2

b2θ2u2 + 2bdu+ d2θ2
, (4.1)
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where a, b, d, θ ∈ Ep. If we find λ = df
du , then we get

f
′
(u) =

2[(a2bdθ2 − ab2θ2)u2 + (a2d2θ2 − b4θ4)u+ abd2θ2 − b3dθ2]

[b2θ2u2 + 2bdu+ d2θ2]2
. (4.2)

Hereafter, to prove (i) and (ii), we are going to check the p-adic norm of λ =
f
′
(u) at u0, u1,2.

(i) Let us plug u0 in (4.2). Then we get

λ|u0 = f
′
(u0)

= 2
(a2bdθ2 − ab2θ2)u2

0 + (a2d2θ2 − b4θ4)u0 + abd2θ2 − b3dθ2

[b2θ2u2
0 + 2bdu0 + d2θ2]2

= 2
(a2bdθ2 − 1− (ab2θ2 − 1))u2

0 + (a2d2θ2 − 1− (b4θ4 − 1))u0

[(b2θ2 − 1)u2
0 + u2

0 + 2(bd− 1)u0 + u0 + d2θ2 − 1 + 1]2

+ 2
abd2θ2 − 1− (b3dθ2 − 1)

[(b2θ2 − 1)u2
0 + u2

0 + 2(bd− 1)u0 + u0 + d2θ2 − 1 + 1]2
. (4.3)

From here, taking the p-adic norm of (4.3), we obtain

|f ′(u0)|p ≤
1

p
< 1

since |2|p = 1 and |u0 + 1|p = 1.

Then u0 is an attractor.

(ii) Let us plug u1,2 in (4.2). Then we get

λ|u1,2 = f
′
(u1,2)

= 2
(a2bdθ2 − ab2θ2)u2

1,2 + (a2d2θ2 − b4θ4)u1,2 + abd2θ2 − b3dθ2

[b2θ2u2
1,2 + 2bdu1,2 + d2θ2]2

= 2
(a2bdθ2 − 1− (ab2θ2 − 1))u2

1,2 + (a2d2θ2 − 1− (b4θ4 − 1))u1,2

[(b2θ2 − 1)u2
1,2 + u2

1,2 + 2(bd− 1)u1,2 + u1,2 + d2θ2 − 1 + 1]2

+ 2
abd2θ2 − 1− (b3dθ2 − 1)

[(b2θ2 − 1)u2
1,2 + u2

1,2 + 2(bd− 1)u1,2 + u1,2 + d2θ2 − 1 + 1]2
. (4.4)

Since

|(b2θ2 − 1)u2
1,2 + u2

1,2 + 2(bd− 1)u1,2 + u1,2 + d2θ2 − 1 + 1|p = |u1,2 + 1|p,

taking the p-adic norm of (4.4), we obtain

|f ′(u1,2)|p ≥ p3 > 1

from Lemma 4.1 and the strong triangle inequality.

In this case, we conclude that u1,2 are repellent.
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Then, as a conclusion, we state that the fixed point u0 is an attractor and the
other fixed points u1,2 are repellent.

Now we are going to describe the basin of attraction of the fixed point u0,

A(u0) = {u ∈ Qp : fn(u)→ u0} .

Let
B = {u ∈ S1(u0) : ∃n0 ∈ N fn0(x) ∈ K},

where K = {u ∈ S1(u0) : |u0 − 1|p < 1}.
One can see that

B =

( ⋃
n≥1

f−n(K)

)⋂
S1(u0). (4.5)

Now we are going to describe the size of an attractor of the dynamic function as
in [16].

Theorem 4.3. Let a, b, d, θ ∈ Ep. Then the following statements hold:

(i) If p > 3,
√

∆ =
√

(2bd+b2θ2u0−a2θ2
b2θ2

)2 − 4 1
u0

, then one has

A(u0) = B ∪ (Qp \ S1(u0)) ∪B1(0).

(ii) Otherwise, A(u0) = Qp.

Proof. (i) Due to Lemma 3.3, for any u ∈ Ep, we infer that u ∈ A(u0), which
means that Ep ⊂ A(u0). We notice that Ep = B1(u0).

Consider several cases.
(I) Assume that |u|p < 1, i.e., u ∈ B1(0). Now, let us examine | f(u) |p and

| f(u)− 1 |p. One can see that

| f(u) |p =
|(a2θ2 − 1)u2 + u2 + 2(ab− 1)u+ 2u+ (b2θ2 − 1) + 1|p
|(b2θ2 − 1)u2 + u2 + 2(bd− 1)u+ 2u+ (d2θ2 − 1) + 1|p

=
|u+ 1|2p
|u+ 1|2p

= 1,

and

| f(u)− 1 |p =
|(a2θ2 − b2θ2)u2 + 2(ab− bd)u+ b2θ2 − d2θ2|p

|u+ 1|2p
< 1,

which imply f(u) ∈ Ep. Hence, u ∈ A(u0), which means that B1(0) ⊂ A(u0). So,

B1(0) ∪ Ep ⊂ A(u0).

(II) Now assume that |u|p > 1 taking into account that u /∈ S1(u0). Then we
have

|f(u)|p =
|u+ 1|2p
|u+ 1|2p

= 1,
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and since

max{|(a2θ2 − 1)u2|p, |(b2θ2 − 1)u2|p} < |u|2p and |u+ 1|2p = |u|2p,

we obtain

| f(u)− 1 |p =
|(a2θ2 − b2θ2)u2 + 2(ab− 1)u− (bd− 1)u+ b2θ2 − d2θ2|p

|u+ 1|2p

=
|(a2θ2 − 1)u2 − (b2θ2)u2 + u2 + 2(ab− bd)u+ b2θ2 − d2θ2|p

|u+ 1|2p

=
max{|(a2θ2 − 1)u2|p, |(b2θ2 − 1)u2|p}

|u|2p
< 1,

which means f(u) ∈ Ep. So, u ∈ A(u0).
Consequently, if |u|p > 1, then u ∈ A(u0).
(III) Let us consider |u|p = 1. Then

|f(u)|p =
|u+ 1|2p
|u+ 1|2p

= 1,

and since

max{|(a2θ2 − 1)u2|p, |(b2θ2 − 1)u2|p} < |u|2p = 1 and |u+ 1|2p = |u|2p = 1,

|f(u)− 1|p =
|(a2θ2 − b2θ2)u2 + 2(ab− 1)u− (bd− 1)u+ b2θ2 − d2θ2|p

|u+ 1|2p

=
|(a2θ2 − 1)u2 − (b2θ2)u2 + u2 + 2(ab− bd)u+ b2θ2 − d2θ2|p

|u+ 1|2p

=
max{|(a2θ2 − 1)u2|p, |(b2θ2 − 1)u2|p}

|u|2p
< 1.

Hence one gets f(u) ∈ Ep, so u ∈ A(u0).
Therefore, we have

B ∪ (Qp \ S1(x0)) ∪B1(0) ⊂ A(x0).

Now assume that u /∈ B ∪ (Qp \ S1(u0)) ∪ B1(0). Due to (4.5), it yields that
fn(u) /∈ K for all n ∈ N. This means that

|fn(u)− 1|p ≮ 1, n ∈ N. (4.6)

If fn(u) → u0 as n → ∞, then from (4.6) one finds |fn(u) − 1|p < 1, which is a
contradiction. Therefore, we infer that u /∈ A(u0). So,

A(u0) ⊂ B ∪ (Qp \ S1(u0)) ∪B1(0).

This completes the part (i).
(ii) The proof of this part immediately follows from (i).
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5. Conclusions

In [3], it is proven that the p-adic λ-Ising model has three fixed points, which
means that in the model there exist three transition invariant p-adic quasi Gibbs
measures on the Cayley tree of order two. In this work, we continued the inves-
tigation of the dynamical properties of these fixed points.

As a main result of this paper, we proved that the p-adic norm of the derivative
of the dynamical function (3.14) are |f ′(u0)|p < 1 and |f ′(u1,2)|p > 1 at the fixed
points. Hence, u0 is an attractor and u1,2 are repellent fixed points. Moreover,
we described the size of the basin attractor of the fixed point, u0.

Acknowledgments. The author thanks the reviewer for precious comments
and help.
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Про динамiчну поведiнку p-aдичної λ-iзiнгової
моделi на деревi Кейлi

Mutlay Dogan

У данiй статтi ми продовжуємо вивчення деяких властивостей p-
aдичної λ-iзiнгової моделi змiшаного типу, що вивчалася в [3]. У тiй ро-
ботi iснування p-адичних мiр Гiбса i фазових переходiв дослiджувалося
в моделi на деревi Кейлi другого порядка. У данiй статтi ми вивчаємо
динамiчну поведiнку нерухомих точок, якi було знайдено в [3]. Основним
результатом є те, що ми довели, що нерухома точка u0 є атрактором,
а iншi нерухомi точки u1,2 репелентними нерухомими точками для p-
aдичної λ-iзiнгової моделi змiшаного типу. На додаток описано розмiр
басейну атрактора для нерухомої точки u0.

Ключовi слова: p-адичнi числа, p-адична квазiмiра Гiббса, динамiчнi
системи, дерево Кейлi.
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