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The subjects of this work are the implicit linear difference equations
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1. Introduction

Let X and Y be locally convex Hausdorff spaces, X∗ be a dual to X space
endowed with the strong topology, i.e., the topology of uniform convergence on
every bounded subset of X [6, Chapter IV, §3, Section 1]. Denote by L(X,Y )
the space of linear continuous operators from X into Y . Consider also the space
S(Y ) = Y N∪{0} of sequences of elements from Y , endowed by the product topol-
ogy for a countable collection of copies of Y [6, Chapter I, §1, Section 7]. In what
follows, all the spaces are real unless a different assumption is specified explicitly.
However, our results are also valid for the associated complex spaces.

Consider the implicit difference equation

Axn+1 +Bxn = gn, n = 0, 1, 2, . . . , (1.1)

where A,B ∈ L(X,Y ) and {gn}∞n=0 ∈ S(Y ). In the case of X = Y and A =
I, the identity operator, equation (1.1), is called explicit; otherwise it is implicit
[5, 23]. With KerA 6= {0}, the implicit difference equation (1.1) is said to be
degenerate [23, p. 194].

c© S.L. Gefter and A.L. Piven, 2019

https://doi.org/10.15407/mag15.03.336


Implicit Linear Nonhomogeneous Difference Equation 337

We also consider the following particular case of (1.1):

Axn+1 = xn − fn, n = 0, 1, 2, . . . (1.2)

with A ∈ L(X,X) and {fn}∞n=0 ∈ S(X).
Let the symbol A∗ stand for the operator adjoint to A.
A large collection of the existence and uniqueness theorems for the implicit

equation (1.1) with a specified initial data was obtained in [3,5,12]. The homoge-
neous case of (1.1) was studied in [11, Chapter IV, Section 3]. Periodic solutions
for explicit difference equations were considered in [7] and for degenerate equa-
tions in [23, Subsection 6.4]. Various criteria for the existence and uniqueness
of a bounded solution of (1.1) with a bounded sequence {fn}∞n=0 were obtained
in [2,13]. Also, the above criteria were obtained in [2,7,22] for difference equations
(1.1) considered for n ∈ Z.

Equation (1.2) can be considered as the linear equation of the second kind

T x+ f = x

in S(X), where the operator T : S(X)→ S(X) is defined as follows:

(T x)n = Axn+1, n = 0, 1, 2, . . . .

In this context, naturally, there arises a problem of describing conditions, under
which the only solution of (1.2) is of the form

x = (I − T )−1f =
∞∑
k=0

T kf,

i.e.,

xn =
∞∑
k=0

Akfn+k, n = 0, 1, 2, . . . (1.3)

(see also Remark 3.4). Furthermore, similar problems are considered for a more
general implicit equation (1.1). Some results of that sort were announced in [10]
for the case when X and Y are Banach spaces, and a more detailed exposition
was presented for the case when B = −I and X = Y is a Fréchet space. Section
3 of this paper provides detailed proofs of the announced results (see Theorem
3.5, Corollary 3.7, Theorem 3.11, and Corollary 3.13). The next result of Sec-
tion 3 is clarification of general conditions on a locally convex space X and a
continuous linear operator A, which guarantee that any solution of (1.2) has the
form (1.3) (see Lemma 3.1). We call the associated property of A the weak local
nilpotency (see Definition 2.4). The relations between this property and the well-
known nilpotency and local nilpotency properties are studied in Section 2 (see
also Remark 3.3). Furthermore, the relation between these properties and the
Bessaga–Pelczyński theorem (see Theorem 2.9) are established in this section.

Section 4 contains studying (1.2) in a dual space produced via an operator
in the original space (see equation (4.1)). Assuming that the original space is
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reflexive and the associated dual is a Fréchet space, a criterion of the existence and
uniqueness for a solution of implicit difference equations (4.1) for any sequence
of continuous linear functionals is obtained (Theorem 4.1).

Our next step is to consider (1.2) in some special classes of locally convex
spaces. It is shown in Sections 5 and 6 that, with X being a sort of space as
above, the Banach inverse mapping theorem is valid in S(X). Thus, if (1.2) in
these spaces has a unique solution for any sequence {fn}∞n=0, this solution is given
by (1.3) (see Theorem 5.1, Corollary 5.2, Theorem 6.1, and Corollary 6.3). The
results obtained in these sections are applied, in particular, for studying (1.2)
in a purely algebraic situation, when X = R∞ is the space of finite sequences,
which can be identified with the space of polynomials R[x] (see Example 5.3 and
Remark 5.4).

2. Preliminaries

The subjects of this section are certain generalizations of the nilpotency prop-
erty for continuous linear operators on topological vector spaces. The following
lemma shows that the case of nilpotent operator is the simplest in studying (1.2).

Lemma 2.1. Let A : X → X be a nilpotent operator with nilpotency index
r + 1 on a vector space X defined everywhere. Then for any sequence {fn}∞n=0

the difference equation (1.2) has a unique solution

xn =
r∑

k=0

Akfn+k, n = 0, 1, 2, . . . . (2.1)

Proof. Let the nilpotency index of A be equal to r + 1. Then

Ar+1 = 0. (2.2)

A fact that the sequence (2.1) is a solution of equation (1.2) is verified by sub-
stituting (2.1) in (1.2) taking into account (2.2). We prove the uniqueness of
this solution. For this, we take in (1.2) fn = 0, n = 0, 1, 2, . . . and consider the
homogeneous equation

Axn+1 = xn, n = 0, 1, 2, . . . . (2.3)

Then, by (2.2), (2.3), we obtain

xn = Axn+1 = A2xn+2 = · · · = Ar+1xn+r+1 = 0, n = 0, 1, 2, . . . .

Therefore the homogeneous equation (2.3) has only trivial solution xn = 0, n =
0, 1, 2, . . . . The lemma is proved.

Definition 2.2. Let X be an arbitrary vector space, and A : X → X be a
linear operator defined everywhere. A is called locally nilpotent [17, p. 375] if
for any x ∈ X there exists k = k(x) ∈ N such that Akx = 0.
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Remark 2.3. Note that in a Fréchet space any locally nilpotent operator is
nilpotent (see [1, Problem 2.2.6, p. 70], where this was proved for Banach spaces).
In more general spaces this fact can fail. For example, the differentiation operator
on the space of polynomials with the natural inductive limit topology is locally
nilpotent but not nilpotent.

Definition 2.4. An everywhere defined continuous operator A : X → X on
a locally convex Hausdorff space is called weakly locally nilpotent if for any f ∈
X and ϕ ∈ X∗ there exists a positive integer k = k(f, ϕ) such that ϕ(Akf) = 0.

The following two lemmas establish criteria of weak local nilpotency for the
operator A, assuming that either X or X∗ is a Fréchet space.

Lemma 2.5. Let X be a Fréchet space. A ∈ L(X,X) is a weakly locally
nilpotent operator iff A∗ is locally nilpotent.

Proof. Sufficiency. If A∗ is a locally nilpotent operator, then for any ϕ ∈
X∗ there exists a number k = k(ϕ) ∈ N such that for any f ∈ X the following
equalities are fulfilled: 0 = (A∗)kϕ(f) = ϕ(Akf). Therefore the operator A is
weakly locally nilpotent.

Necessity. We fix an arbitrary functional ϕ ∈ X∗. For any k ∈ N, we consider
the closed set Xk = {f ∈ X : ϕ(Akf) = 0}. Since the operator A is weakly locally
nilpotent, we have that X =

⋃∞
k=1Xk. Since X is a complete metrizable space,

it follows from the Baire theorem that X is a second category set. Consequently,
for some k = k(ϕ) ∈ N, the set Xk contains a ball Br(x0) = {x ∈ X : dX(x, x0) ≤
r}, where dX(·, ·) is a distance in the Fréchet space X. Therefore ϕ(Akx) = 0 for
any x ∈ Br(x0). Taking into account that a neighborhood of zero is an absorbent
set, we conclude that ϕ(Akx) = 0 for any x ∈ X. Thus, (A∗)kϕ = 0, i.e., the
operator A∗ : X∗ → X∗ is locally nilpotent. The lemma is proved.

Lemma 2.6. Let X be an arbitrary locally convex Hausdorff space such that
its dual X∗ is a Fréchet space with respect to the strong topology. An everywhere
defined operator A : X → X is weakly locally nilpotent iff A is locally nilpotent.

Proof. Sufficiency is obvious from the lemma assertion.
Necessity is to be proved. Let f ∈ X. For any k ∈ N, we consider a closed

subset X̃k = {ϕ ∈ X∗ : ϕ(Akf) = 0} of the Fréchet space X∗. Since the operator
A is weakly locally nilpotent, we have X∗ =

⋃∞
k=1 X̃k. Since X∗ is a complete

metrizable space, it follows from the Baire theorem that X∗ is a second category
set. Consequently, for some k = k(f) ∈ N, the set Xk contains a ball Br(ϕ0) =
{ϕ ∈ X∗ : dX∗(ϕ,ϕ0) ≤ r}, where dX∗(·, ·) is a distance in the Fréchet space
X∗. Therefore, ϕ(Akf) = 0 for any ϕ ∈ Br(ϕ0). Taking into account that a
neighborhood of zero is an absorbent set, we conclude that ϕ(Akf) = 0 for any
ϕ ∈ X∗, therefore by the Hahn–Banach theorem, Akf = 0. Thus, the operator
A is locally nilpotent. The lemma is proved.

Remark 2.7. Suppose that both X and X∗ are Fréchet spaces. Then, by
Proposition 15 [20, Chapter 6, §3], X is a Banach space, and in this case the
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weak local nilpotency of an operator A is equivalent to its nilpotency by Remark
2.3 and Lemma 2.6.

Now we show that a weakly locally nilpotent operator on a Fréchet space may
appear to be non-locally nilpotent.

Example 2.8. Let X = s = S(R) be the space of all sequences of real numbers
with the topology of the coordinate-wise convergence, A be the right shift i.e.,
Au = (0, u0, u1, u2, . . . ) for u = (u0, u1, u2, . . . ) ∈ s. The operator A is defined
and continuous on X, but it is not locally nilpotent. Let us show that it is weakly
locally nilpotent. The general form of a linear continuous functional ϕ ∈ s∗ is
given by

ϕ(x) =

m∑
k=0

akxk, x = (x0, x1, x2, . . . .) ∈ s

[15, p. 284]. Then, for n > m, one has ϕ(Anx) = 0 for any x ∈ s. Therefore the
operator A is weakly locally nilpotent.

The following Theorem shows that all the examples of weakly locally nilpotent
but not nilpotent operators in a Fréchet space are somehow related to the space s.

Theorem 2.9. Let X be a Fréchet space. An arbitrary continuous weakly lo-
cally nilpotent operator on X is nilpotent iff X does not contain a closed subspace
isomorphic to the space s.

Proof. Necessity. Let X contain a closed subspace isomorphic to s. Since
there is no norm, which is continuous with respect to the topology of the space
s (see, for example, [4, Corollary 1]), then there is no such a norm on X. By the
Bessaga–Pelczyński theorem [4, Theorem 2], the following decomposition of the
space X into a direct sum is fulfilled: X = X1 ⊕ X2, where X1, X2 are closed
spaces and X1 is isomorphic to s. On the space s, consider the operator A from
Example 2.8, and let Ã = F−1AF ⊕ 0, where F is an isomorphism X1 onto s.
Then the operator Ã ∈ L(X,X) is weakly locally nilpotent but it is not nilpotent.

Sufficiency. Let X not contain a closed subspace isomorphic to s. Then, by
the Bessaga–Pelczyński theorem [4, Theorem 2], there exists a continuous norm
‖ · ‖ on X. Consider the normed space (X, ‖ · ‖) and its dual space (X, ‖ · ‖)∗
which is a Banach space. It is obvious that the space (X, ‖ · ‖)∗ is contained in
X∗. Now, let A ∈ L(X,X) be a weakly locally nilpotent operator on the space
X. Then A is a weakly locally nilpotent operator on the space (X, ‖ · ‖), too. By
Lemma 2.6, the operator A is a locally nilpotent operator on the space (X, ‖ · ‖)
and thus on the original space X. Since A ∈ L(X,X), we have that A is nilpotent
(see Remark 2.3). The proof is complete.

3. Conditions for the existence and uniqueness of a solution of
implicit difference equations in Banach and Fréchet spaces

We start with proving the following general fact on the existence and unique-
ness for the solution of (1.2).
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Suppose that Z is a locally convex Hausdorff space. We say that Banach’s
inverse mapping theorem is valid for the space Z if the operator T −1 is continuous
for any continuous isomorphism T of the space Z.

Lemma 3.1. Let X be a locally convex Hausdorff space. Let Banach’s inverse
mapping theorem be valid for S(X). If the difference equation (1.2) has a unique
solution for any sequence {fn}∞n=0, then the operator A : X → X is weakly locally
nilpotent. In this case, the solution of (1.2) is given by (1.3), where the series
in the right-hand side of (1.3) converges in the topology of X. Moreover, this
solution of (1.2) continuously depends on the right-hand side of this equation in
the topology of S(X).

Proof. Since A ∈ L(X,X), we have that the linear operator

A : S(X)→ S(X), (Ax)n = xn −Axn+1, x ∈ S(X),

is continuous on the space S(X). Now, by the assumption of the lemma, the op-
erator A−1 : S(X)→ S(X) is continuous. In particular, the solution of equation
(1.2) continuously depends on the right-hand side of this equation in the topology
of S(X).

For m ∈ N and f = {fn}∞n=0 ∈ S(X), we consider the sequence fm =
{fmn }∞n=0 ∈ S(X), where

fmn =

{
fn, n ≤ m
0, n > m

.

By the immediate verification, we conclude that for m ∈ N the sequence xm =
{xmn }∞n=0, where

xmn =


m−n∑
k=0

Akfn+k, n ≤ m

0, n > m,

(3.1)

is a solution of the difference equation

Axmn+1 = xmn − fmn , n = 0, 1, 2, . . . . (3.2)

Note that fmn+k = fn+k if k ≤ m − n and m ≥ n. Formula (3.2) shows that
A−1fm = xm. Since the operator A−1 is continuous and limm→∞ f

m = f in
S(X), then there exists limm→∞ x

m in the space S(X). In particular, this implies
that there exists limm→∞ x

m
0 . Taking into account the representation (3.1), for

xm0 we obtain that the series
∑∞

k=0A
kfk converges for any fk ∈ X (k = 0, 1, 2, . . . )

to some element x0. In a similar way, the elements xn (n = 1, 2, . . . ) are defined
by formula (1.3). By the direct substitution of these elements in equation (1.2),
we verify that formula (1.3) defines the solution of equation (1.2).

Now we prove the weak local nilpotency of A. Put fk = αkf , where f is an ar-
bitrary element of X and {αk}∞k=0 is an arbitrary sequence of real numbers. Then,
for any linear continuous functional ϕ ∈ X∗, the scalar series

∑∞
k=0 αkϕ(Akf)

converges. Consequently, limk→∞ αkϕ(Akf) = 0. Since {αk}∞k=0 is an arbitrary
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sequence, we obtain that for any f ∈ X, ϕ ∈ X∗ there exists k = k(f, ϕ) ∈ N
such that ϕ(Akf) = 0. Therefore, A is a weakly locally nilpotent operator. The
lemma is proved.

Example 3.2. Suppose the difference equation (1.2) has a unique solution for
any sequence {fn}∞n=0. Let us prove that the operator I − A is invertible. If
(I −A)u = 0, then Au = u and the assumption on the uniqueness for a solution
of (1.2) implies u = 0. Now, let g ∈ X. Consider (1.2) with fn = g for all
n = 0, 1, 2, . . . . If a sequence {xn}∞n=0 is a solution of this equation, then so is
{xn+1}∞n=0. Therefore, xn+1 = xn for all n, i.e., {xn}∞n=0 is a constant sequence,
and (I − A)x0 = g. Thus we have that the operator I − A is invertible and the
unique solution of the equation Axn+1 = xn − f0 has the form

xn = (I −A)−1f0, n = 0, 1, 2, . . . .

Now, if the all conditions of Lemma 3.1 are fulfilled, then this Lemma implies
that

(I −A)−1f0 =
∞∑
k=0

Akf0.

Remark 3.3. It became clear while proving Lemma 3.1 that the continuous op-
erator A in question has the following property: the series

∑∞
k=0A

kfk converges
for any sequence {fk}∞k=0. This property can be also treated as a certain gener-
alization of the nilpotency property. In fact, the proof of Lemma 3.1 establishes
that any operator with such property is weakly locally nilpotent.

Remark 3.4. It has been shown in Introduction that the general form (1.3)
for a solution of (1.2) can be deduced via the general concepts of linear analysis.
It should be also observed that it is derivable by using an analog of the Cramer
formula for a solution of linear systems. Let us view the elements of the space
S(X) as column vectors. Rewrite (1.2) in the form

Ax = f, with A =


I −A 0 0 · · ·
0 I −A 0 · · ·
0 0 I −A · · ·
...

...
...

...
. . .

 , x, f ∈ S(X). (3.3)

We claim that the form (1.3) for a solution of (1.2) can be considered as the
collection of Cramer’s formulas for a solution of the infinite system of linear
equations (3.3). In this context, it is natural to assume that the determinant ∆
of this system is the identity operator I. Consider the following operator-vector
matrix A0 corresponding to the vector x0 which is to be found:

A0 =


f0 −A 0 0 · · ·
f1 I −A 0 · · ·
f2 0 I −A · · ·
...

...
...

...
. . .

 .
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Introduce now the sequence of principal minors of this matrix in the sense of [9]:

∆0,0 = f0,

∆0,1 =

∣∣∣∣f0 −A
f1 I

∣∣∣∣ = f0 +Af1,

∆0,2 =

∣∣∣∣∣∣
f0 −A 0
f1 I −A
f2 0 I

∣∣∣∣∣∣ = f0 +Af1 +A2f2,

. . .

∆0,m =

∣∣∣∣∣∣∣∣∣∣∣

f0 −A 0 0 · · · 0
f1 I −A 0 · · · 0
f2 0 I −A · · · 0
...

...
...

...
. . .

...
fm 0 0 0 · · · I

∣∣∣∣∣∣∣∣∣∣∣
=

m∑
k=0

Akfk.

Under the assumptions of Lemma 3.1 and in view of (1.3), there exists
limm→∞∆0,m, which we call the determinant of A0 and denote by ∆0(f). Now
(1.3) for the vector x0 can be written as the Cramer formula

x0 = ∆−1 ·∆0(f).

Similar techniques are applicable for finding other components of the solution.
In view of (1.3), the operator inverse to A is given by

A−1 =


I A A2 A3 · · ·
0 I A A2 · · ·
0 0 I A · · ·
...

...
...

...
. . .

 .

Now assume that X is a Fréchet space. The following theorem establishes
the necessary and sufficient conditions for a unique solvability of (1.2) with an
arbitrary sequence {fn}∞n=0.

Theorem 3.5. Let X be a Fréchet space and A ∈ L(X,X). The local nilpo-
tency of the adjoint operator A∗ is a necessary condition for the existence and
uniqueness of solution of the difference equation (1.2) with any sequence {fn}∞n=0.
Under the additional assumption that X is weakly sequentially complete, this con-
dition is also sufficient. In this case, the solution of (1.2) is given by (1.3), where
the convergence of series in the right-hand side of (1.3) is in the topology of the
Fréchet space X.

Proof. Necessity. The space S(X) is a Fréchet space with the distance [15, p.
28],

d
(
{xn}∞n=0, {yn}∞n=0

)
=
∞∑
n=0

1

2n
dX(xn, yn)

1 + dX(xn, yn)
.
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In this space the Banach inverse mapping theorem is valid [6, Chapter 1, §3,
Section 3]. Then, by Lemma 3.1, the operator A is weakly locally nilpotent.
Since X is a Fréchet space, we obtain by Lemma 2.5 that A∗ is a locally nilpotent
operator.

Sufficiency. We consider the vector-valued sequence

ym =
m∑
k=0

Akfk ∈ X.

By the local nilpotency of A∗, the scalar sequence

ϕ(ym) =
m∑
k=0

ϕ(Akfk) =
m∑
k=0

(A∗)kϕ(fk)

is stabilized for any functional ϕ ∈ X∗: ϕ(ym) = ϕ(yk(ϕ)), m ≥ k(ϕ). Therefore
the sequence {ym}∞m=0 is fundamental with respect to the weak convergence on X.
Since the space X is weakly sequentially complete, then there exists an element
x0 ∈ X such that the sequence {ym}∞m=0 weakly converges to x0. Then the series∑∞

k=0A
kfk weakly converges to the element x0. Analogously, for n = 1, 2, . . . the

sequence {xn}∞n=0 is defined by (1.3). Taking into account the continuity of A,
by a direct substitution of (1.3) into (1.2), we verify that the sequence {xn}∞n=0

is a solution of (1.2).
We prove the uniqueness of a solution of equation (1.2). For this, we consider

the homogeneous equation

Axn+1 = xn, n = 0, 1, 2, . . . . (3.4)

Then xn = Akxn+k, n, k = 0, 1, 2, . . . . Taking into account the local nilpotency
of A∗, we obtain ϕ(xn) = 0 (n = 0, 1, 2, . . . ) for any functional ϕ ∈ X∗. By the
Hahn–Banach theorem, xn = 0, n = 0, 1, 2, . . . , i.e., the homogeneous equation
(3.4) has only trivial solution. Therefore the difference equation (1.2) has a
unique solution for any sequence {fn}∞n=0. It follows from the proven necessity
of the theorem assertion that the series

∑∞
k=0A

kfk converges in the topology of
the space X for any fk ∈ X (k = 0, 1, 2, . . . ). Consequently, for any n ∈ N, the
series in the right-hand side of equality (1.3) also converges in the topology of
the space X. The proof is complete.

Remark 3.6. Example 2.8 of the shift operator on the Fréchet space X = s
shows that (1.2) may have a unique solution for an arbitrary sequence {fn}∞n=0,
while the operator A is not locally nilpotent. In fact, with the elements from s
being written as xn = {xn,m}∞m=0, fn = {fn,m}∞m=0, (1.2) acquires the form

xn,0 = fn,0, xn+1,m−1 = xn,m − fn,m, m ∈ N, n = 0, 1, 2, . . . . (3.5)

Now, for an arbitrary fn = {fn,m}∞m=0 ∈ s (n = 0, 1, 2, . . . ), (1.2) has a unique
solution xn = {xn,m}∞m=0 ∈ s (n = 0, 1, 2, . . . ), which is deducible from the
relations (3.5),

xn,m =
m∑
k=0

fn+k,m−k, n,m = 0, 1, 2, . . . .
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The following assertion claims that in the particular case, when X is a Banach
space, the existence and uniqueness of a solution of (1.2) for any preassigned
sequence {fn}∞n=0 implies the nilpotency of the operator A.

Corollary 3.7. Let X be a Banach space and A ∈ L(X,X). The difference
equation (1.2) has a unique solution {xn}∞n=0 for an arbitrary sequence {fn}∞n=0

iff A is nilpotent. Moreover, with r + 1 being the nilpotency index of A, the
solution of the difference equation (1.2) is given by (2.1).

Proof. Sufficiency follows from Lemma 2.1. We prove the necessity. By
Theorem 3.5, the series

∑∞
k=0A

kfk converges for any fk ∈ X (k = 0, 1, 2, . . . ).
We show that it is possible only in the case of nilpotency of A. Actually, if there
exists x ∈ X such that Akx 6= 0 (k = 1, 2, 3, . . . ), then the series

∑∞
k=0A

kfk
diverges for fk = x

‖Akx‖ . Therefore, for any x ∈ X, there exists k = k(x) ∈ N
such that Akx = 0, i.e., A is locally nilpotent. By Remark 2.3, the operator A is
nilpotent. The corollary is proved.

Corollary 3.8. Let X be a complex Hilbert space, and A ∈ L(X,X) be a
normal operator, i.e., A∗A = AA∗. Then the difference equation (1.2) has a
unique solution {xn}∞n=0 for an arbitrary sequence {fn}∞n=0 iff A = 0.

To prove this fact, it suffices to note that any nilpotent normal operator is
the null-operator.

Corollary 3.7 admits the following generalization.

Corollary 3.9. Let X be a Fréchet space where there is a norm which is
continuous with respect to the topology of the space X. Let A ∈ L(X,X). The
difference equation (1.2) has a unique solution for every sequence {fn}∞n=0 iff the
operator A is nilpotent.

To prove this fact, we note that by Theorem 3.5 and Lemma 2.5, the operator
A is weakly locally nilpotent. Therefore the nilpotency of A follows from Theorem
2.9. The converse is just the claim of Lemma 2.1.

Remark 3.10. It is interesting to observe that if a Fréchet space admits no
continuous norm, then, by the Bessaga–Pelczyński theorem, it must contain a
subspace isomorphic to the space of all sequences (see [4, Theorem 2] and [14,
Exercize 7, §16.3.4]).

Now let us turn to studying the general equation (1.1).

Theorem 3.11. Let X and Y be Fréchet spaces and A,B ∈ L(X,Y ). The ex-
istence of the inverse operator B−1 ∈ L(Y,X) and the local nilpotency of (B−1A)∗

is a necessary condition for the existence and uniqueness of solution of the dif-
ference equation (1.1) for an arbitrary sequence {gn}∞n=0. Under the additional
assumption of X being weakly sequentially complete, this condition also appears
to be sufficient. In this case, a solution of (1.1) is given by

xn =

∞∑
k=0

(−1)k(B−1A)kB−1gn+k, n = 0, 1, 2, . . . , (3.6)
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where the convergence of series in the right-hand side of (3.6) is in the topology
of the Fréchet space X.

Proof. Necessity. Let the right-hand side of equation (1.1) possess the prop-
erty gn = 0, n = 1, 2, . . . . Then the corresponding unique solution {xn}∞n=1 of
this equation satisfies to the homogeneous equation

Axn+1 +Bxn = 0, n = 1, 2, . . . .

By the uniqueness of a solution for equation (1.1), we have xn = 0, n = 1, 2, . . . .
Then the vector x0 is a solution of the linear equation Bx0 = g0. This equation
has a unique solution for any g0 ∈ Y . Then, by the Banach inverse mapping
theorem, there exists an inverse operator B−1 ∈ L(Y,X). Therefore the difference
equation (1.1) is reduced to the equation

−B−1Axn+1 = xn −B−1gn, n = 0, 1, 2, . . . . (3.7)

Applying Theorem 3.5 to (3.7), we obtain the local nilpotency of the operator
(B−1A)∗ and representation (3.6) for the corresponding solution.

Sufficiency. It follows from the existence of the inverse operator B−1 ∈
L(Y,X) that equation (1.1) is equivalent to equation (3.7). It follows from the
local nilpotency of the operator (B−1A)∗ and Theorem 3.5 that this equation has
a unique solution for any sequence {gn}∞n=0 and this solution is represented by
(3.6). The theorem is proved.

Corollary 3.12. Under assumptions of Theorem 3.11, the initial problem
x0 = a ∈ X for (1.1) is solvable iff

a =

∞∑
k=0

(−1)k(B−1A)kB−1gk.

In the case where X,Y are Banach spaces, we obtain the assertion below,
which is similar to Corollary 3.7.

Corollary 3.13. Let X and Y be Banach spaces and A,B ∈ L(X,Y ). The
difference equation (1.1) has a unique solution {xn}∞n=0 for an arbitrary sequence
{gn}∞n=0 iff there exists the inverse operator B−1 ∈ L(Y,X) and the operator
B−1A is nilpotent. In this case, if the nilpotency index of B−1A is equal to r +
1, then the solution of the difference equation (1.1) is determined by

xn =

r∑
k=0

(−1)k(B−1A)kB−1gn+k, n = 0, 1, 2, . . . .

The proof is similar to that of Theorem 3.11 with a reference to Corollary 3.7.
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4. An implicit difference equation in the dual space

It was noted in Remark 3.6 that (1.2) may have a unique solution for any
sequence {fn}∞n=0 ∈ S(X), while the operator A is not locally nilpotent. However,
one has an important case when the property of local nilpotency is valid.

Let V be a locally convex Hausdorff space and T ∈ L(V, V ). Suppose that
the dual space V ∗ is endowed with the strong topology, i.e., the topology of
uniform convergence on every bounded subset of V [6, Chapter IV, §3, Section
1]. According to [6, Chapter IV, §4, Section 2], the adjoint operator T ∗ : V ∗ →
V ∗ is continuous. Consider the implicit difference equation in the dual space V ∗:

T ∗ϕn+1 = ϕn − ψn, n = 0, 1, 2, . . . (4.1)

with a given sequence {ψn}∞n=0 ∈ S(V ∗). Theorem 3.5 implies the following
criterion of the existence and uniqueness for a solution of (4.1).

Theorem 4.1. Let V be a locally convex Hausdorff space. Assume that the
strong dual V ∗ is a Fréchet space and T ∈ L(V, V ). The local nilpotency for T is a
necessary condition for the existence and uniqueness of solution of the difference
equation (4.1) with an arbitrary sequence {ψn}∞n=0; if V is a reflexive space, this
condition is also sufficient.

Proof. Equation (4.1) is a particular case of equation (1.2) with the operator
A = T ∗ acting in the Fréchet space X = V ∗. Here X∗ = V ∗∗ and A∗ = T ∗∗.

We prove an assertion on the necessity of the condition of the theorem. Let
equation (4.1) have a unique solution for any sequence {ψn}∞n=0. Then, by Theo-
rem 3.5, the operator A∗ is locally nilpotent. For any x ∈ V , we define the linear
continuous functional ϕx ∈ V ∗∗ as follows: ϕx(f) = f(x), f ∈ V ∗. By the local
nilpotency of the operator A∗ = T ∗∗, for any x ∈ X, there exists a number k =
k(x) such that for any f ∈ V ∗ the following equalities hold:

0 = (T ∗∗)kϕx(f) = ϕx((T ∗)kf) = (T ∗)kf(x) = f(T kx).

It follows from the Hahn–Banach theorem that T kx = 0. Thus the operator T is
locally nilpotent.

Sufficiency. Let T be a locally nilpotent operator and V be a reflexive space.
Then V is a barrelled space [6, Chapter IV, §3, Section 3]. We show that V ∗

is a weakly sequentially complete space. Consider an arbitrary element v ∈
V and a sequence {xn}∞n=1 of elements from X = V ∗ such that the sequence
{xn(v)}∞n=1 is fundamental. Since V is a barrelled space, it follows from Corollary
7.1.4 [8, Section 7.1] that the linear functional x(v) = limn→∞ xn(v) is continuous.
Now it follows from the reflexivity of V that V ∗ is weakly sequentially complete.
Furthermore, since the space V is reflexive, then the operator A∗ = T ∗∗ can be
identified with the original operator T [8, Section 8.7]. By Theorem 3.5, there
exists a unique solution of equation (4.1) for any sequence {ψn}∞n=0. The theorem
is proved.
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Example 4.2. Consider the locally convex Hausdorff vector space V = R∞
of finite sequences of real numbers with the natural inductive limit topology of
finite-dimensional subspaces. Note that any linear functional on R∞ is continuous
and the strong dual space V ∗ can be identified with the Fréchet space s. The
space V ∗∗ is naturally identified with the original space V (see [15, p. 119]).
Therefore V is a reflexive space. Let T : R∞ → R∞ be a linear operator defined
everywhere. T is certainly continuous. Consider the difference equation (4.1) in
the space s with a given sequence {ψn}∞n=0 ∈ S(V ∗). By Theorem 4.1, equation
(4.1) has a unique solution for an arbitrary sequence {ψn}∞n=0 ∈ S(V ∗) iff T is
locally nilpotent.

5. A necessary condition for solvability of an implicit difference
equation in an (LF )-space

Let X be an (LF )-space, i.e., a strict inductive limit of a sequence of Fréchet
spaces [21, Chapter II, Section 6]. The following theorem establishes a necessary
condition for unique solvability of (1.2) for any preassigned sequence {fn}∞n=0.

Theorem 5.1. Let X be an (LF )-space. If the difference equation (1.2)
has a unique solution for an arbitrary sequence {fn}∞n=0, then the operator A ∈
L(X,X) is weakly locally nilpotent. In this case, the solution of (1.2) is given
by (1.3), where the convergence of series in the right-hand side of (1.3) is in the
original topology of X.

Proof. First, let us show that X is an ultrabornological space [18, Definition
13.2.3 (b)]. It should be noted that a Fréchet space is ultrabornological [18,
Example 13.2.8(d)]. Furthermore any inductive limit of ultrabornological spaces
is again ultrabornological [18, Theorem 13.2.9]. Hence X is ultrabornological.
Note also that the space X is sequentially complete. Since the topological product
of countably many bornological spaces is again bornological [15, p. 384] and the
product of countably many sequentially complete spaces is again sequentially
complete [15, p. 296], we have that S(X) is an ultrabornological space [18,
Theorem 13.2.12]. Consequently, the space S(X) is represented as an inductive
limit of Banach spaces (see [18, Theorem 13.2.11]). Next, the space S(X) is a
countable topological degree of X and X is covered by countably many its Fréchet
subspaces. By the terminology of [19, p. 231], this means that S(X) is a PUF -
space. Therefore, by the Banach open mapping theorem, for PUF-spaces [19, p.
231, Theorem 3] we obtain that the Banach open mapping theorem is fulfilled for
the space S(X). By Lemma 3.1, the operator A is weakly locally nilpotent. The
theorem is proved.

Corollary 5.2. Under assumptions of Theorem 5.1, suppose that the strong
dual X∗ is a Fréchet space. If the difference equation (1.2) has a unique solution
for an arbitrary sequence {fn}∞n=0, then the operator A ∈ L(X,X) is locally nilpo-
tent. In this case, the solution of (1.2) is given by (1.3), where the convergence
of series in the right-hand side of (1.3) is in the original topology of X.
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This is an immediate consequence of Theorem 5.1 and Lemma 2.6.

Example 5.3. Consider the space X = R∞ of finite sequences with the natural
topology of the inductive limit of finite-dimensional subspaces. The dual space
X∗ for X is the Fréchet space s. Let A : R∞ → R∞ be an arbitrary linear
operator defined everywhere. A is certainly continuous. Consider (1.2) in R∞
with a preassigned sequence {fn}∞n=0 ∈ S(X). By Corollary 5.2, the difference
equation (1.2) may have a unique solution for an arbitrary sequence {fn}∞n=0 ∈
S(X) in the case of the local nilpotency of A only.

Remark 5.4. The subject of Example 5.3 is the difference equation (1.2) in the
space R∞, related to the context of Theorem 5.1 and its corollary. What is crucial
here is the possibility to apply the Banach inverse mapping theorem to S(R∞). It
follows from Köthe results (see [16, p. 31]) that S(R∞) is a barrelled Pták space,
and hence the Banach inverse mapping theorem is applicable to S(R∞) (see
Section 6 below). It is interesting to observe that certain sophisticated results of
the topological vector spaces theory, in fact, work in the purely algebraic context
of Example 5.3.

The following example shows that, in general, a local nilpotency of the oper-
ator A is not sufficient for the uniqueness of a solution of (1.2).

Example 5.5. Let X = R∞, and A be the left shift operator, i.e., Au =
(u1, u2, . . . ) for u = (u0, u1, u2, . . . ) ∈ X. Now (1.2) acquires the form

xn+1,m+1 = xn,m − fn,m, n,m = 0, 1, 2, . . . , (5.1)

where xn = {xn,m}∞m=0 and fn = {fn,m}∞m=0 are the elements of R∞. The
difference equation (5.1) is equivalent to

xn+1,m+1 =


xn−m,0 −

m∑
k=0

fn−k,m−k, m ≤ n

x0,m−n −
n∑

k=0

fn−k,m−k, m > n
. (5.2)

Choose an arbitrary sequence {x0,m}∞m=0 ∈ R∞ and an arbitrary sequence
{xn,0}∞n=1. Now all other xn,m’s are uniquely determined via (5.2). Then, for
each n ∈ N, the sequence {xn,m}∞m=0 is an element of R∞, too. In fact, for any
fixed n = 0, 1, 2, . . . there exists m0(n) > n such that fn,m = 0 for all m > m0(n).
Since {x0,m}∞m=0 ∈ R∞, we deduce the existence of k0 ∈ N such that x0,m = 0 for
all m > k0. Set

N0(n) = max{ max
k=0,...,n

(m0(n− k) + k), n+ k0}.

It follows from (5.2) that xn+1,m+1 = 0 for all m > N0(n). Therefore,
{xn,m}∞m=0 ∈ R∞ for any n ∈ N.

The elements xn,m constructed above satisfy the difference equation (5.1).
Therefore, given arbitrary {fn}∞n=0 ∈ S(R∞) and initial vector x0 ∈ R∞, the
initial problem for (1.2) has a solution. In particular, the associated homogeneous
equation has nontrivial solutions. Among those, one has xn,m = δnm, where δnm
is the Kronecker delta.
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6. A necessary condition for solvability of an implicit difference
equation in a Pták space

This section expounds an application of the theory of Pták spaces intended
to deduce necessary conditions for the existence and uniqueness of a solution of
the difference equation (1.2) for an arbitrary sequence {fn}∞n=0.

We recall the definition of a Pták space or a B-complete space (see, for exam-
ple, [21, Chapter IV, Section 8], [16, §34]). Let X be a locally convex Hausdorff
space. We denote by σ(X∗, X) the weak-star topology on the dual space X∗. The
space X is said to be a Pták space if a subspace Q ⊂ X∗ is closed for σ(X∗, X)
whenever Q ∩ F is σ(X∗, X)-closed in F for each equicontinuous set F ⊂ X∗

(see [21, Chapter III, Section 4]). We note that every Fréchet space is a Pták
space [21, Chapter IV, Section 8, Example 1] and every closed subspace of a Pták
space is a Pták space [21, Chapter IV, 8.2].

The following theorem establishes a necessary condition for unique solvability
of equation (1.2) in a Pták space with an arbitrary preassigned sequence {fn}∞n=0.

Theorem 6.1. Let X be such a barrelled space that its countable topological
power is a Pták space. If the difference equation (1.2) has a unique solution
for an arbitrary sequence {fn}∞n=0, then A is a weakly locally nilpotent operator.
Moreover, the solution of (1.2) is given by (1.3), where the convergence of series
in the right-hand side of (1.3) is in the original topology of X.

Proof. The space S(X) is a countable topological degree of the space X.
According to [6, Chapter 4, §2, Section 2, Remark 1], S(X) is a barrelled space.
Therefore S(X) is a barreled Pták space. Now, by the open mapping theorem
for barreled Pták spaces [21, Chapter IV, Section 8, Corollary 1], we obtain that
the Banach inverse mapping theorem is fulfilled in the space S(X). By Lemma
3.1, the operator A is weakly locally nilpotent. The theorem is proved.

Example 6.2. With M being an infinite set, consider the space X = RM ,
which is a topological power of a one-dimensional space. X is a locally convex
barreled space. Observe that with M being uncountable, X fails to be a Fréchet
space [15, p. 207]. It should be noted that S(X) is isomorphic to RM×(N∪{0}).
Now [21, Chapter IV, Section 8, Example 3] implies that S(X) is a Pták space.
Therefore, if A is an arbitrary continuous linear operator in X, then the existence
and the uniqueness for a solution of (1.2) with an arbitrary sequence {fn}∞n=0 ∈
S(X) can be true in the case of the weak local nilpotency of A only.

Corollary 6.3. Let X be a weakly complete locally convex space and A ∈
L(X,X). If the difference equation (1.2) has a unique solution with an arbitrary
sequence {fn}∞n=0, then A is weakly locally nilpotent. Moreover, the solution of
(1.2) is given by (1.3), where the convergence of series in the right-hand side of
(1.3) is in the original topology of X.

Proof. According to [21, Exercise 6a to Chapter IV], the space X is topologi-
cally isomorphic to the space RM for some set M . Now the assertion of Corollary
6.3 follows from the arguments given in Example 6.2 and Theorem 6.1.
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Remark 6.4. The assumption of Theorem 6.1 was that S(X) is a Pták space.
It was shown in [16, p. 31] that the product of Pták spaces may appear not to
be a Pták space. However, with S(X) being a Pták space, one deduces from [21,
Chapter IV, Section 8, Theorem 8.2, Corollary 2] that X is a Pták space too.
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Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (2017), No. 6, 3–8
(Russian).

[11] I. Gohberg, S. Goldberg, and M.A. Kaashoek, Classes of Linear Operators, I, Op-
erator Theory: Advances and Applications, 49, Birkhäuser Verlag, Basel, 1990.
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[19] D.A. Răıkov, Closed Graph and Open Mapping Theorems. Appendix in Russian
transl. of [20]: A.P. Robertson and W. J. Robertson, Topological Vector Spaces,
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Неявне лiнiйне неоднорiдне рiзницеве рiвняння у
банахових та локально опуклих просторах

S.L. Gefter and A.L. Piven

Темою дослiдження цiєї роботи є неявнi лiнiйнi рiзницевi рiвняння
Axn+1 + Bxn = gn та Axn+1 = xn − fn, n = 0, 1, 2, . . ., де A та B є непе-
рервними операторами, якi дiють на деяких локально опуклих просто-
рах. Одержано необхiднi та достатнi умови разом з явними формулами
для розв’язкiв цих рiвнянь. Як застосування загальної теорiї, вивчено
рiвняння Axn+1 = xn − fn у просторi R∞ фiнiтних послiдовностей та у
просторi RM , де M — довiльна множина.

Ключовi слова: рiзницеве рiвняння, локально опуклий простiр, бана-
хiв простiр, локально нiльпотентний оператор.
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