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In this survey, we have made an attempt to present the contemporary
ideas and methods of investigation of qualitative dynamics of infinite di-
mensional dissipative systems. Essential concepts such as dissipativity and
asymptotic smoothness of dynamical systems, global and fractal attrac-
tors, determining functionals, regularity of asymptotic dynamics are pre-
sented. We place the emphasis on the quasi-stability method developed by
I. Chueshov and I. Lasiecka. The method is based on an appropriate de-
composition of the difference of the trajectories into a stable and a compact
parts. The existence of this decomposition has a lot of important conse-
quences: asymptotic smoothness, existence and finite dimensionality of at-
tractors, existence of a finite set of determining functionals, and (under some
additional conditions) existence of a fractal exponential attractor. The rest
of the paper shows the application of the abstract theory to specific prob-
lems. The main attention is paid to the demonstration of the scope of the
quasi-stability method.
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1. Introduction

The idea of the quasi-stability method was introduced for the first time by
I. Chueshov and I. Lasiecka in [35] and was inspired by the so-called stabilizabil-
ity inequalities, which arise in control theory (see discussions in [39] and [41]).
To some extent, this method is a weakened version of the decomposition method
(see [2,126]), which is used for establishing the asymptotic compactness of dissi-
pative dynamical systems. However, in contrast to the standard decomposition
method, the quasi-stability method assures the possibility of representation of
the difference of two trajectories as a sum of compact and exponentially sta-
ble parts. Such a decomposition can be not only established for a wide class of
infinite-dimensional models, but it also guarantees the existence and finite di-
mensionality of global attractors. Although the quasi-stability method originates
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from the theory of hyperbolic equations with nonlinear damping, nowadays it is
used for studying many other classes of evolution dissipative systems [39,42]), in-
cluding delayed systems or systems with memory (see, e.g., [50,51,69,70,113,119]
and Theorem 9.3.5 in [41]). The same approach was applied in [33] to the analy-
sis of the asymptotic behavior of a degenerated hyperbolic model. The quantum
Zakharov system (see [23] and references therein) and several classes of inter-
active hydroelastic systems [25, 26, 52, 53] were also successfully studied by the
quasi-stability method.

The main goal of the survey is to give a description of the quasi-stability
method in the context of general infinite dimensional dissipative dynamical sys-
tems theory and to present typical applications of the method to dissipative
problems in mathematical physics and solid mechanics.

The survey begins with a short description of general notions and methods in
the area of infinite dimensional dissipative dynamics and the presentation of the
main ideas of the quasi-stability method. All other sections are devoted to the
applications of the method to various problems in mathematical physics.

2. General methods of studying asymptotic dynamics

In this section, we describe basic notions of the dynamical systems theory
and introduce several approaches for studying asymptotic behavior of dissipative
dynamical systems generated by partial differential equations. We pay significant
attention to the quasi-stability method. The reader can find a more detailed
description of the methods in monographs [2, 13, 18, 27, 83, 93, 122, 126]. The
results presented in this section are rather standard and well-known. Our goal
is to formulate these results concisely and make the text self-contained for the
readers’ convenience.

2.1. Basic notions. A dynamical system (DS) is a pair (X,St), consisting
of a complete metric space X and a family of continuous mappings {St : t ∈ R+}
of X into itself, which satisfies the semigroup property: S0 = I, St+τ = StSτ . We
also assume that y(t) = Sty0 is continuous with respect to t for any y0 ∈ X. In
this case, the space X is called a phase space (or a state space), and the operator
family St is said to be an evolution semigroup (or an evolution operator, or a
(semi)flow).

A closed set B ⊂ X is called absorbing for DS (X,St) if for any bounded set
D ⊂ X there exists t0(D) such that StD ⊂ B for all t ≥ t0(D). DS (X,St) is
called (bounded, or uniformly) dissipative if it possesses a bounded absorbing set
B. If X is a Banach space and B ⊂ {x ∈ X : ‖x‖X ≤ R}, then the value R > 0
is said to be a dissipativity radius of (X,St).

DS (X,St) is called asymptotically smooth if for every bounded set D such
that StD ⊂ D for all t > 0 there exists a compact K in the closure D of D such
that

lim
t→+∞

dX{StD | K} = 0,
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where dX{A|B} = supx∈A distX(x,B). It can be shown (see [27] or [115])
that asymptotic smoothness is equivalent to Ladyzhenskaya condition: for ev-
ery bounded set D such that

⋃
t≥t0 StD is bounded for some t0, every sequence

of the form {Stnxn} is precompact for all {xn} ⊂ D and tn → +∞.
A set D ⊂ X is called positively invariant if StD ⊆ D for all t ≥ 0, and

negatively invariant if StD ⊇ D for all t ≥ 0. A set D is called (strictly) invariant
if it is both positively and negatively invariant, that is, StD = D for all t ≥ 0.

Let D ⊂ X. A set
γtD ≡

⋃
τ≥t

SτD

is called a tail (from the moment t) of trajectories emanating from D. Evidently,
γtD = γ0

StD
.

If D = {v} consists of a single point, then γ+
v := γ0

D is called a positive semi-
trajectory (or semiorbit) emanating from v. The continuous curve γ ≡ {u(t) :
t ∈ R} in X is called a full trajectory) if Stu(τ) = u(t+ τ) for any τ ∈ R and t ≥
0. Since St can be a noninvertible operator, full trajectories may not exist. Semi-
trajectories are positively invariant sets, full trajectories are (strictly) invariant
sets.

For describing the asymptotic behavior of DS, the notion of ω-limit sets is
used. A set

ω(D) ≡
⋂
t>0

γtD =
⋂
t>0

⋃
τ≥t

SτD

is said to be an ω-limit set of trajectories emanating from D. The bar over a set
denotes the closure of the set. Equivalently, x ∈ ω(D) if and only if there exist
the sequences tn → +∞ and xn ∈ D such that Stnxn → x when n → ∞. It is
clear that the ω-limit sets (if they exist) are positively invariant.

2.2. Asymptotic smoothness criteria. The next assertion is a generaliza-
tion of the Ceron-Lopez criterion (see [83]). Theorem 2.1 below is rather general
and quite simple to apply. In some sense, it uses a weak form of quasi-stability
inequality.

Theorem 2.1. Let (X,St) be a dynamical system on a Banach space X. Let
for every bounded positively invariant set B in X there exist T > 0, a continu-
ous nondecreasing function g : R+ 7→ R+, and a pseudometric %TB on the space
C(0, T ;X) of continuous functions with values in X such that

(i) g(0) = 0; g(s) < s, s > 0;

(ii) the pseudometric %TB is precompact (with respect to the norm in X) in the
following sense: every bounded sequence {xn} ⊂ B contains a subsequence
{xnk

} such that the sequence {yk} ⊂ C(0, T ;X) of the form yk(τ) = Sτxnk

is a Cauchy sequence with respect to the pseudometric %TB;

(iii) for all y1, y2 ∈ B, the following estimate holds:

‖ST y1 − ST y2‖ ≤ g
(
‖y1 − y2‖+ %TB({Sτy1}, {Sτy2})

)
,
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where {Sτyi} is an element of C(0, T ;X) defined by yi(τ) = Sτyi.

Then (X,St) is an asymptotically smooth dynamical system.

We note that the precompact pseudometric is defined for pieces of trajectories
Sτ , but not for initial states (as it was in the classical interpretation, see, e.g.,
[83]). It turns out to be very useful for applications. The details of the proof of
Theorem 2.1 can be found in [39]. It relies on the inequality

α(STB) ≤ g(α(B)),

where α(B) is a Kuratovsky α-measure of non-compactness defined by the for-
mula

α(B) = inf{δ : B has a finite cover by sets of diameter < δ} (2.1)

for every bounded set B in X. More details about this characteristic can be
found in [83] or [122, Lemma 22.2], [27, Chapter 2.2.2].

There exist two other criteria of asymptotic smoothness, which allow us not
to use the assumption on the strong compactness of nonlinear terms:

• the criterion of compensated compactness is an idea, first introduced by Khan-
mamedov in [89] and later generalized in [39];

• Ball’s energy method, see [4] and [106].

The corresponding results are given below.

Theorem 2.2 (The compensated compactness method). Let (X,St) be a
dynamical system on a complete metric space X with a metric d. Assume that
for every positively invariant set B in X and every ε > 0 there exists T ≡ T (ε, B)
such that

d(ST y1, ST y2) ≤ ε+ Ψε,B,T (y1, y2), yi ∈ B, (2.2)

where Ψε,B,T (y1, y2) is a functional defined on B ×B such that

lim inf
m→∞

lim inf
n→∞

Ψε,B,T (yn, ym) = 0 (2.3)

for any sequence {yn} from B. Then (X,St) is an asymptotically smooth dynam-
ical system.

It follows from (2.2) and (2.3) that α(StB) → 0 if t → +∞, where α(B) is
a Kuratovsky α-measure of non-compactness defined by (2.1). This implies the
desired result. The details of the proof can be found in [39] or [41].

Note that in the “compact” case, when the functional Ψ is sequentially com-
pact, condition (2.3) is satisfied automatically. The above criterion is used for
critical nonlinearities (see [39,41]).

The second method can be used for the cases of critical and supercritical non-
linearities (see Subsections 4.2 and 8.2), however, there are requirements which
restrict the application of this method. The main idea of Ball’s method is to
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construct an appropriate functional of energy type, which can be decomposed
into exponentially decaying and compact terms. The idea of the decomposition
of a semigroup into uniformly decaying and compact parts lies behind most of cri-
teria of asymptotic smoothness, however, Ball’s energy method described below
is based on such a decomposition of functionals, but not of evolution operators
(semigroups).

We introduce Ball’s method following [106]. The original method for a dissi-
pative wave equation is described in [4].

Theorem 2.3 (Ball’s energy method). Let St be a continuous evolution semi-
group of operators which are simultaneously strongly and weakly continuous. Let
there exist the functionals Φ, Ψ, L, K, defined on the whole phase space, such
that the energy inequality

[Φ(Stu) + Ψ(Stu)] +

∫ t

s
L(Sτu)e−ω(t−τ)dτ

= [Φ(Ssu) + Ψ(Ssu)]e−ω(t−s) +

∫ t

s
K(Sτu)e−ω(t−τ)dτ (2.4)

holds for all u ∈ X, and the functionals Φ, Ψ, L and K satisfy the following
properties:

• Φ : X 7→ R+ is a bounded continuous functional, and if {Uj} is a bounded se-
quence in X, tj → +∞, StjUj ⇀ U weakly in X and lim supn→∞Φ(StjUj) ≤
Φ(U), then StjUj → U strongly in X.

• Ψ : X 7→ R is an asymptotically weakly continuous functional in the sense
that if {Uj} is bounded in X, tj → +∞, StjUj ⇀ U weakly in X, then
Ψ(StjUj)→ Ψ(U).

• K : X 7→ R is an asymptotically weakly continuous functional in the sense
that if {Uj} is bounded in X, tj → +∞, StjUj ⇀ U weakly in X, then
K(SsU) ∈ L1(0, t), and

lim
j→∞

∫ t

0
e−ω(t−s)K(Ss+tjUj)ds =

∫ t

0
e−ω(t−s)K(SsU)ds, ∀t > 0.

• L is an asymptotically weakly semicontinuous from below functional in the
sense that if {Uj} is bounded in X, tj → +∞, StjUj ⇀ U weakly in X, then
L(SsU) ∈ L1(0, t), and

lim inf
j→∞

∫ t

0
e−ω(t−s)L(Ss+tjUj)ds ≥

∫ t

0
e−ω(t−s)L(SsU)ds, ∀t > 0.

Then the semigroup St is asymptotically smooth.

Concerning the result above, we make the following remarks.
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1. The existence of decomposition (2.4) depends also on whether the energy
equality holds for weak solutions. This is quite a restrictive condition which
may be difficult to verify (in contrast to the energy inequality). Besides, the
proof of the equality in (2.4) for second-order equations requires the linearity
of damping.

2. The functional Φ (usually convex) plays a role of the energy of the linearised
system and is a good topological measure for the solution. In the uniformly
convex spaces X the assumptions on Φ are satisfied automatically. Indeed,
the weak convergence and the convergence of norms to the norm of the weak
limit implies strong convergence.

3. The assumptions on the functionals Ψ, K, and L represent some properties
of compactness of the nonlinear part of the energy of the system, which often
take place even for supercritical nonlinearities. In fact, these terms allow
us to work with noncompact sources in the equation in the case when the
corresponding nonlinear part of the energy is sequentiallly compact. A three-
dimensional wave equation with the source |f(s)| ≤ C(1 + |s|p) with p <
5 is a typical example, for which Ball’s method can be applied due to the
embedding H1(Ω) ⊂ Lq(Ω), q ≤ 6.

2.3. Global attractors. Attractors are principal objects which appear in
the analysis of the asymptotic behavior of infinite-dimensional dynamical sys-
tems. Investigation of attractors allows us to answer a number of questions on
the properties of limit regimes, which may appear in the system under consider-
ation. Nowadays, there exist several general approaches and methods of proving
the existence and finite dimensionality of global attractors for a wide range of
dynamical systems generated by nonlinear PDEs (see, e.g., [2, 18, 27, 83, 93, 126]
and references therein).

Definition 2.4. A bounded closed set A ⊂ X is said to be a global attractor
of a dynamical system (X,St) if the following properties hold:

(i) A is a strictly invariant set, i.e., StA = A for all t ≥ 0.

(ii) A is a uniformly attracting set, i.e., for every bounded set D ⊂ X,

lim
t→+∞

dX{StD |A} = 0,

where dX{A|B} = supx∈A distX(x,B) is the Hausdorff semidistance.

It turns out that the dissipativity together with the asymptotic smoothness
implies the existence of a global attractor. This result is well known (see [83],
and [2, 93,126]).

Theorem 2.5. Every dissipative and asymptotically smooth DS (X,St) on
a Banach space X possesses a unique global attractor A. The attractor is a
connected set and can be described as a set of all bounded full trajectories. Besides,
A = ω(B) for any bounded absorbing set B of the DS (X,St).
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In the case when a DS possesses a specific structure, namely, when the DS
is gradient, the dissipativity is unnecessary (in the explicit form) for proving the
existence of a global attractor. This is a very useful property, especially when it
is technically complicated to prove dissipativity.

Below we introduce the notions of the Lyapunov function, the gradient DS
and the unstable manifold, which are common in dynamical systems theory (see,
e.g., [2, 18,83,93,126]).

Definition 2.6. Let Y ⊆ X be a positively invariant set of a DS (X,St).

• A continuous functional Φ(y), defined on Y , is said to be a Lyapunov function
of the DS (X,St) on the set Y if a function t 7→ Φ(Sty) is non-increasing for
any y ∈ Y .

• The Lyapunov function Φ(y) is said to be strict on Y if the equality Φ(Sty) =
Φ(y) for all t > 0 implies Sty = y for all t > 0; that is, y is a stationary point
of (X,St).

• A dynamical system (X,St) is said to be gradient if it possesses a strict
Lyapunov function on the whole phase space X.

Definition 2.7. Let N be a set of stationary points of the DS (X,St):

N = {v ∈ X : Stv = v for all t ≥ 0} .

The unstable manifold Mu(N ), emanating from the set N , is a set of all y ∈ X
such that there exists a full trajectory γ = {u(t) : t ∈ R} for which the following
properties hold:

u(0) = y and lim
t→−∞

distX(u(t),N ) = 0.

The main result on the existence and properties of a global attractor for
gradient systems is the following theorem (the proof can be found in [27, 39, 41];
see also [115, Theorem 4.6], where a similar result is proved).

Theorem 2.8. Let (X,St) be a gradient asymptotically smooth DS. Assume
that its Lyapunov function Φ(x) is bounded from above on every bounded subset
of X and the sets ΦR = {x : Φ(x) ≤ R} are bounded for every R. If, in addition,
the set of the stationary points N of the DS (X,St) is bounded, then (X,St)
possesses a compact global attractor A =Mu(N ) with the following properties:

• the global attractor A consists of full trajectories γ = {u(t) : t ∈ R} such that

lim
t→−∞

distX(u(t),N ) = 0 and lim
t→+∞

distX(u(t),N ) = 0;

• for any x ∈ X,
lim

t→+∞
distX(Stx,N ) = 0,

i.e., every trajectory tends to the set of the stationary points of the DS N ;
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• if N = {z1, . . . , zn} is a finite set, then A = ∪ni=1Mu(zi), where Mu(zi) is
an unstable manifold emanating from a stationary point zi, and, moreover,

(i) the global attractor A consists of full trajectories γ = {u(t) : t ∈ R}, con-
necting pairs of stationary points: every u ∈ A belongs to a full trajectory
γ and for every γ ⊂ A there exists a pair {z, z∗} ⊂ N such that

u(t)→ z as t→ −∞ and u(t)→ z∗ as t→ +∞;

(ii) for every v ∈ X there exits a stationary point z such that Stv → z when
t→ +∞.

In many applications a question of stability of the attractor with respect to
the parameters of the system is important. To describe this phenomenon at the
abstract level, we consider a family of dynamical systems (X,Sλt ) with the same
phase space X and evolution operators Sλt depending on a parameter λ belonging
to a complete metric space Λ. The following assertion is proved by Kapitansky
and Kostin [88] (similar results can be found in [2] and [83]).

Theorem 2.9 (Upper semicontinuity). Let the dynamical system (X,Sλt ) on
the complete metric space X possess a compact global attractor Aλ for every λ ∈
Λ. Let also the following conditions hold:

(i) there exists a compact set K ⊂ X such that Aλ ⊂ K;

(ii) if λk → λ0, xk → x0 and xk ∈ Aλk , then

Sλkτ xk → Sλ0τ x0 for some τ > 0. (2.5)

Then the family of attractors {Aλ} is upper semicontinuous in the point λ0, i.e.,

dX

{
Aλ | Aλ0

}
≡ sup

{
distX(x,Aλ0) : x ∈ Aλ

}
→ 0 when λ→ λ0.

Moreover, if (2.5) holds for every τ > 0, then the upper limit A(λ0,Λ) of the
attractor family Aλ in λ0 is defined by the formula

A(λ0,Λ) =
⋂
δ>0

⋃
{Aλ : λ ∈ Λ, 0 < dist(λ, λ0) < δ}

and is a non-empty compact strictly invariant set contained in the attractor Aλ0

and possesses the property

dX

{
Aλ | A(λ0,Λ)

}
→ 0 when λ→ λ0.

The finite dimensionality is an important property of an attractor which can
be established for many important from the point of view of applications dynam-
ical systems. There exist several methods of efficient estimation of the dimension
of attractors of dynamical systems generated by PDEs. The survey of the ap-
proaches can be found in monograph [27].
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Here we present a method that can be applied to locally Lipschitz flows. This
method is a generalization of the Ladyzhenskaya theorem [93], but it does not
require explicit construction of projectors. There is a similar approach [114],
based on a squeezing property. However, the dimension estimates obtained with
the help of this theorem (as well as the estimates based on the Ladyzhenskaya
theorem) are often too pessimistic.

Definition 2.10. Let M be a compact set in a metric space X. The fractal
dimension dimf M of the set M is defined as

dimf M = lim sup
ε→0

lnn(M, ε)

ln(1/ε)
,

where n(M, ε) is the minimal number of closed balls of radius ε covering the set
M .

To describe the complexity and properties of the embedding of compact sets
one can also use the Hausdorff dimension dimH . We do not give formal definition
of this notion here (see, e.g., [68]), but note that

(i) the Hausdorff dimension does not exceed (but in general case, is not equal
to) the fractal dimension;

(ii) the fractal dimension is more convenient for calculations.

The following result is a generalization of [93] and it was established in [27].
Similar results were obtained earlier in [35] (see also [39]).

Theorem 2.11 (On the finite dimensionality of an attractor). Let H be a
separable Banach space and M be a bounded closed set in H. Let there exist a
map V : M 7→ H such that M ⊆ VM , a Lipschitz map K from M to a Banach
space Z and a compact seminorm nZ(x) on Z such that

‖V v1 − V v2‖ ≤ η‖v1 − v2‖+ nz(Kv1 −Kv2)

for every v1, v2 ∈M , where 0 < η < 1 is a constant.

Then M is a compact in H set of finite fractal dimension, which can be
estimated as

dimf M ≤ lnmz

(
4LK
1− η

)[
ln

2

1 + η

]−1

,

where LK is the Lipschitz constant for K and mZ(R) is a minimal number of
elements zi in the ball {z ∈ Z : ||z|| ≤ R} such that ||zi − zj ||Z > 1 for i 6= j.

Seminorm n(x) on a Banach space H is said to be compact if for every se-
quence {xm} ⊂ H such that xm ⇀ 0 weakly in H.

The main idea of the proof is to establish that the mapping V is an α-
contraction in the sense of [83] (see also Lemma 2.18 in [39]) provided the as-
sumptions of Theorem 2.11 hold.
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2.4. Quasi-stable systems. In this section, we give a brief description (a
more detailed presentation can be found in monograph [27]) of a special criterion
which gives the existence of an attractor as well as its important properties: finite
dimensionality, smoothness, existence of a fractal exponential attractor and so
on. We will define a class of the so-called quasi-stable systems, which satisfy
some stabilizability estimates given in general form. These inequalities imply a
number of consequences which describe different properties of attractors. At the
first time this type of stability attracted attention in the work by I. Chueshov and
I. Lasiecka [35, Theorem 3.11], devoted to the dynamics of evolution equations
of the second order in-time. Later this method was developed for many other
nonlinear problems of mathematical physics, which we will consider in subsequent
chapters. Recently the notion of quasi-stability was generalized for application
to “parabolic-like” models. We will consider two classes of quasi-stable systems,
which are motivated by different types of dynamics and demonstrate its additional
properties. The first class is designed mainly for the study of semilinear parabolic
problems, the second one is developed to deal with systems generated by second-
order in-time equations.

2.4.1. General concept of quasi-stability. We begin with quasi-stability
at a fixed time moment. This notion is motivated by several classes of PDEs,
both parabolic and hyperbolic. The general idea serving as a basis of this notion
can be applied to many other classes of problems.

Definition 2.12. Let (X,St) be a dynamical system on a Banach space X.
The system is said to be quasi-stable (QS) on a set B ⊂ X at the moment t∗ if
there exist:

(a) a moment t∗ > 0,

(b) a Banach space Z,

(c) a globally Lipschitz mapping K : B 7→ Z and

(d) a compact seminorm nZ(·) on the space Z such that

‖St∗y1 − St∗y2‖X ≤ q‖y1 − y2‖X + nZ(Ky1 −Ky2) (2.6)

for all y1, y2 ∈ B with 0 ≤ q < 1.

Note that the space Z, the mapping K, the seminorm nZ and the moment t∗
may depend on B.

The definition of quasi-stability is natural from the point of view of asymp-
totic behavior. In some sense, it reflects decomposition of the flow into compact
and exponentially stable parts (see. (2.6)), and is, to some extent, an analog
of the decomposition methods according to Babin–Vishik [2] and Temam [126].
However, our decomposition is performed for a difference of the trajectories, not
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for an individual trajectory. It is worth mentioning that in the degenerate case,
if nZ ≡ 0, the expression in (2.6) transforms into

‖St∗y1 − St∗y2‖X ≤ q‖y1 − y2‖X for all y1, y2 ∈ B. (2.7)

Thus, St∗ is a contraction on B (closure of B). Provided B is positively invariant,
there exists a unique stationary point ỹ of the mapping St∗ in B. The invariance
of B implies that Stỹ is a stationary point of St for every t > 0. Thus, Stỹ = ỹ
for all t > 0, that is, ỹ is a unique equilibrium in B. Moreover, (2.7) implies that
this equilibrium is exponentially stable in B, namely,

‖Sty − ỹ‖X ≤ Ce−αt sup
τ∈[0,t∗]

‖Sτy − ỹ‖X for all y ∈ B

for some α > 0. This observation explains the term “quasi-stability” for property
(2.6).

Quasi-stable systems possess a number of remarkable properties, including the
existence of global attractors of finite fractal dimension and global exponential
attractors. First, we formulate consequences of quasi-stability in the most general
form and then represent particular forms of quasi-stability.

Proposition 2.13 (On asymptotic smoothness of QSDS). Let the DS (X,St)
be quasi-stable on every bounded positively invariant set B in X. Then (X,St) is
an asymptotically smooth dynamical system.

One can apply Theorem 2.1 with g(s) = qs, T = t∗, and %TB({Sτy1}, {Sτy2}) =
nZ(Ky1 −Ky2) to prove the proposition.

Corollary 2.14 (On a global attractor of QSDS). Let the DS (X,St) be
dissipative and let it satisfy Assumption 2.13. Then the DS possesses a compact
global attractor.

The following assertion concerns the finiteness of dimension of global attrac-
tors. One can prove it using Theorem 2.11 with V = St∗ .

Theorem 2.15 (Finite dimensionality). Let the DS (X,St) possess a compact
global attractor A and be quasi-stable on A at some moment t∗ > 0. Then the
attractor A is of finite fractal dimension dimfA in X. Moreover, the dimension
can be estimated from above by

dimf A ≤
[
ln

2

1 + q

]−1

lnmZ

(
4LK
1− q

)
,

where LK > 0 is the Lipschitz constant for K and mZ(R) is the maximal number
of elements zi in the ball {z ∈ Z : ‖zi‖Z ≤ R} such that nZ(zi − zj) > 1 for
i 6= j.

There are several results on the (generalized) fractal exponential attractors
of quasi-stable systems. We remind the following definition [67].
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Definition 2.16. A compact set Aexp ⊂ X is said to be an inertial manifold
or a fractal exponential attractor of DS (X,St) if Aexp is a positive invariant set
of finite fractal dimension and for every bounded set D ⊂ X there exist positive
constants tD, CD and γD such that

dX{StD |Aexp} ≡ sup
x∈D

distX(Stx, Aexp) ≤ CDe−γD(t−tD), t ≥ tD.

If an exponential attractor has a finite fractal dimension in some extended space
X̃ ⊃ X, it is often called an exponentially attracting set or a generalized fractal
exponential attractor.

Theory of fractal exponential attractors is well presented in [67] and also in
the survey [105]. We emphasize that

(i) a global attractor may be not exponentially attracting, and

(ii) a fractal exponential attractor may be not unique, however, it necessary con-
tains a global attractor.

We also note that the squeezing property in the sense of Foias–Temam is a stan-
dard tool (see, e.g., [67, 105]) for the construction of fractal exponential attrac-
tors (see also discussions in [64,126]). This property says, roughly speaking, that
higher modes of the flow are controlled by lower modes or the semigroup is ex-
ponentially contracting (some generalizations of this method are described in the
survey [105]). The approach developed in [39] and [27] is based on the quasi-
stability property. It means that the semigroup is an asymptotically contracting
modulo homogeneous compact term.

Theorem 2.17 (On a fractal exponential attractor of QSDS). Let the DS
(X,St) is dissipative and quasi-stable on a bounded absorbing set B at a moment
t∗ > 0. We also assume that

‖Sty1 − Sty2‖X ≤ CB‖y1 − y2‖X for all y1, y2 ∈ B and t ∈ [0, t∗],

and there exits a space X̃ ⊇ X such that the map t 7→ Sty is Hölder continuous
in X̃ for all y ∈ B in the sense that there exist 0 < γ ≤ 1 and CB,t∗ > 0 such that

‖St1y − St2y‖X̃ ≤ CB|t1 − t2|
γ , t1, t2 ∈ [0, t∗], y ∈ B. (2.8)

Then the dynamical system (X,St) possesses a (generalized) fractal exponential
attractor of finite in X̃ fractal dimension.

The idea of the proof is to apply Theorem 3.2.1 from [27] with V := St∗ that
gives us the existence of a fractal exponential attractor A ⊂ B for the discrete DS
(X,V k). Setting Aexp = ∪{StA : t ∈ [0, t∗]}, we obtain the existence of a fractal
exponential attractor for (X,St). Its dimension in the corresponding space is
finite due to the Hölder continuity (2.8). The details of the proof can be found

in [27]. We do not know whether the finiteness of the fractal dimension dimX̃
f Aexp

holds without an assumption of the Hölder’s continuity (2.8) in a neighborhood
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of Aexp. It is a consequence of the fact that Aexp is an uncountable union of finite
dimensional sets StA. We also note that the fractal dimension depends on the
topology.

Now we proceed to two special cases which demonstrate some additional prop-
erties of dynamics.

2.4.2. Quasi-stable systems: parabolic-like dynamics. We consider
the quasi-stability estimates with particular choice of the space Z, the seminorm
nZ , and the operator K. This choice is motivated by several classes of parabolic
problems with partial derivatives (see discussion in [27]). We also discuss the
existence of a finite set of determining functionals.

Assumption 2.18. Let (X,St) be a dynamical system on a Banach space X
and B ⊂ X. Assume that there exist:

(a) compact seminorms n1(·) and n2(·) on the space X;

(b) constants a∗, t∗ > 0 and 0 ≤ q < 1 such that

‖Sty1 − Sty2‖X ≤ a∗‖y1 − y2‖X for all y1, y2 ∈ B and t ∈ [0, t∗] (2.9)

and

‖St∗y1 − St∗y2‖X ≤ q‖y1 − y2‖X + n1(y1 − y2) + n2(St∗y1 − St∗y2) (2.10)

for all y1, y2 ∈ B.

Proposition 2.19. Under Assumption 2.18, the dynamical system (X,St) is
quasi-stable on B ⊂ X.

In order to prove this, we set Z = X × X, nz(x, y) = n1(x) + n2(y) in
Definition 2.12 and define K : X 7→ Z as Kx = (x;St∗x).

Thus, dissipative systems satisfying Assumption 2.18 possess a compact global
attractor of finite fractal dimension. Under additional assumption of the Hölder
continuity of t 7→ Sty, we also obtain the existence of a fractal exponential at-
tractor of finite fractal dimension.

Using the structure of quasi-stability estimate (2.10), we can establish some
assertions on the existence of a finite number of determining functionals. For
many applications, it is important to find minimal (or close to minimal) set of
natural parameters of the problem, which determine its asymptotic behavior in
the unique way. The question was first raised in [73] and [91] for the 2D Navier–
Stokes equations. Later it was studied for many other models (see, e.g., [63,
72,74,75,92,124] and references therein). The concept of determining nodes was
introduced in [72,74,124] and the concept of determining local means in [75,86,87].
The general concept of determining functionals in the framework of interpolation
theory was introduced in [60,61]. Such functional sets can be interpreted as some
measurements of the system state.

In fact, we speak not about the existence of such sets of functionals (which can
be not of much use), but rather about a criterion which allows us to verify whether
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the finite set of functionals of prescribed type (measurements) is determining. We
introduce a criterion which uses the estimate of completeness defect of a functional
set via seminorms and constants from quasi-stability inequality.

The reader can find the details in survey [16] (see also [18, Chapter 5]). The
theory of determining functionals was applied for the (discrete) problem of data
assimilation, originated from weather prediction (see, e.g., [24, 85]).

Definition 2.20. A family of linearly independent functionals on X L = {lj :
j = 1, . . . , N} is said to be a family of asymptotically determining functionals if
the relation

lim
t→∞

lj(Sty1 − Sty2) = 0, j = 1, 2, . . . , N,

implies limt→∞ ‖Sty1 − Sty2‖X = 0.

To characterize a set of asymptotically determining functionals, it is conve-
nient to use the notion of the completeness defect suggested in [15,16] for the case
of two embedded Banach spaces. See also [27] for the case of one space endowed
with additional seminorm.

Definition 2.21 (Completeness defect). Let V be a Banach space and µ be
a seminorm on V . The completeness defect of a set of linear functionals L on V
with respect to the seminorm µ is said to be a quantity

εL(V, µ) = sup {µ(w) : w ∈ V, l(w) = 0, l ∈ L, ‖w‖V ≤ 1} .

In the case when V is continuously and densely embedded in another Banach
space X (such that ‖ · ‖X ≤ c‖ · ‖V ), the quantity

εL(V,X) ≡ εL(V, ‖ · ‖X)

= sup{‖w‖X : w ∈ V, l(w) = 0, l ∈ L, ‖w‖V ≤ 1}

is said to be a completeness defect of the set of linear functionals L on V with
respect to X [15, 16]).

Theorem 2.22 (On the determining functionals of QSDS). Let the DS
(X,St) be dissipative and satisfy Assumption 2.18 on some bounded absorbing
set. Let L = {lj : j = 1, . . . , N} be a set of linearly independent functionals on
X such that

εL(n1) + εL(n2) < 1− q,

where εL(nj) ≡ εL(X,nj) is a completeness defect of the functional family L
with respect to the seminorm nj and the constant q < 1 and the seminorms ni
are taken from estimate (2.9). Then L is a set of asymptotically determining
functionals in the sense of Definition 2.20.

The details of the proof and further discussion can be found in [27].

Under the assumptions of Theorem 2.22, it is possible to prove that the family
of functionals L is determining in the sense of Ladyzhenskaya: for any two full
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trajectories γj = {uj(t) : t ∈ R} from B (the set for which quasi-stability holds)
the property

∃ t∗ ∈ R : l(u1(t)) = l(u2(t)) for all t < t∗, l ∈ L,

implies u1(t) ≡ u2(t) for all t ∈ R.

2.4.3. Asymptotically quasi-stable systems. Now we discuss the prop-
erties of quasi-stable systems with phase spaces of special structure. The results
given below were obtained by I. Chueshov and I. Lasiecka in [41, Section 7.9] (see
also [27]).

We set the following assumptions on the structure of the model under con-
sideration.

Assumption 2.23 (Structural assumption). Let X, Y , and Θ be reflexive
Banach spaces, and X be compactly embedded into Y . The phase space H = X×
Y ×Θ is endowed with the norm

‖y‖2H = ‖u0‖2X + ‖u1‖2Y + ‖θ‖2Θ, y = (u0;u1; θ0).

The trivial case Θ = {0} is allowed. Assume that (H,St) is a dynamical system
on H = X × Y ×Θ with the evolution operator of the form

Sty = (u(t);ut(t); θ(t)), y = (u0;u1; θ0) ∈ H, (2.11)

where the functions u(t) and θ(t) are such that

u ∈ C(R+, X) ∩ C1(R+, Y ), θ ∈ C(R+,Θ).

Such a structure of the phase space H and the evolution operator St arises
from many nonlinear PDEs of second order in time on X×Y , possibly interacting
with parabolic equations on the space Θ. This type of interaction is observed,
for example, in problems of thermoelasticity (see., e.g, [40] and [41, Chapters 5
and 11]) and in problems of interaction of plates and viscous fluid (e.g, [21, 52]).
Further, we will use the following definition.

Definition 2.24 (Asymptotic quasi-stability). The DS of the form (2.11) is
said to be asymptotically quasi-stable on a set B ⊂ H if there exists a compact
seminorm µX(·) on the space X and non-negative scalar functions a(t), b(t) and
c(t) on R+ such that

(i) a(t) and c(t) are locally bounded on [0,∞);

(ii) b(t) ∈ L1(R+) is such that limt→∞ b(t) = 0;

(iii) for every y1, y2 ∈ B and t > 0, the following estimates take place:

‖Sty1 − Sty2‖2H ≤ a(t)‖y1 − y2‖2H ,

‖Sty1 − Sty2‖2H ≤ b(t)‖y1 − y2‖2H + c(t) sup
0≤s≤t

[
µX(u1(s)− u2(s))

]2
. (2.12)
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Here we denote Styi = (ui(t);uit(t); θ
i(t)), i = 1, 2.

In the framework of asymptotic dynamics, relation (2.12) was first introduced
in [35] (see also [32] and discussion in [39]). Roughly speaking, it means asymp-
totic stability modulo compact terms. Inequality in (2.12) was named a stabiliz-
ability estimate. It was mentioned in [39] that derivation of such estimates may
be technically complicated (especially for critical problems) and require rather
sophisticated tools of the PDE theory.

Proposition 2.25 (On quasi-stability). Let the structural hypothesis 2.23
take place. Assume that the dynamical system (H,St) is asymptotically quasi-
stable on a set B in H. Then the system is quasi-stable on B at every moment
T > 0 such that b(T ) < 1.

The proof can be found in [27].
Thus, Proposition 2.25, Corollary 2.14 and Theorems 2.15, 2.17 give us the

following result.

Theorem 2.26 (On attractors of AQSDS). Let the structural Assump-
tion 2.23 take place, and the dynamical system (H,St) be dissipative and asymp-
totically quasi-stable on a bounded invariant absorbing set B in H. Then the
system (H,St) possesses a compact global attractor A of finite fractal dimension
dimH

f A.

If there exists a space H̃ ⊇ H such that the map t 7→ Sty is Hölder continuous
in H̃ for every y ∈ B (see (2.8)), then the dynamical system (H,St) possesses a
(generalized) fractal exponential attractor of finite in H̃ fractal dimension.

This theorem was first proved in [39, 41] by using the method of “short”
trajectories, originally suggested in [102] and [103].

Quasi-stability allows us to prove additional regularity of trajectories lying in
an attractor. The theorem below gives us regularity of time derivatives. Addi-
tional “spatial” regularity usually follows from elliptic PDEs theory (see corre-
sponding results for von Karman plates in [41]).

Theorem 2.27 (On regularity of attractors of AQSDS). Let the structural
Assumption 2.23 hold, and let the DS (H,St) possess a compact global attractor
A and be asymptotically quasi-stable on A. Besides, let (2.12) take place with a
function c(t) such that c∞ = supt∈R+

c(t) <∞ (global boundedness). Then every
full trajectory {(u(t);ut(t); θ(t)) : t ∈ R} lying in the global attractor possesses
the following regularity properties:

(i) ut ∈ L∞(R;X) ∩ C(R;Y ), utt ∈ L∞(R;Y ), θt ∈ L∞(R; Θ);

(ii) there exists R > 0 such that

‖ut(t)‖2X + ‖utt(t)‖2Y + ‖θt(t)‖2Θ ≤ R2, t ∈ R,

with R depending only on the constant c∞, the seminorm µX in Defini-
tion 2.24 and the properties of embedding of X in Y .
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It is necessary to estimate a norm of the difference of two trajectories γh =
{y(t+ h) : t ∈ R} from the attractor for small |h|. The details of the proof can
be found in [41] (see also [35,39]).

Asymptotic quasi-stability also implies the following result on determining
functionals, which was proved in [41] (see also [27]).

Theorem 2.28 (On determining functionals of AQSDS). Let the Assump-
tion 2.23 hold and DS (H,St) be dissipative and asymptotically quasi-stable on a
bounded absorbing set B. Denote by L = {lj : j = 1, . . . , N} a set of linearly in-
dependent functionals on X and let εL(µX) be its completeness defect with respect
to the seminorm µX (see Definition 2.21). If there exists τ > 0 such that

ητ ≡ b(τ) + ε2L(µX)c(τ) sup
s∈[0,τ ]

a(s) < 1,

then the relation

lim
t→∞

lj(u
1(s)− u2(s)) = 0, j = 1, 2, . . . , N,

implies limt→∞ ‖Sty1 − Sty2‖H = 0. Here Styi = (ui(t);uit(t); θ
i(t)), i = 1, 2.

The details of the proof can be found in [41].

3. Von Karman plates

Various versions of von Karman equations arise in applications to describe
plate dynamics in the case of large deflections (see [58,59], in the case of stationary
problems and [41,94] in the case of dynamical problems).

3.1. Von Karman equation with nonlinear internal damping. Let
Ω ⊂ R2 be a bounded set and α ∈ [0, 1]. We use the notation Mα ≡ I − α∆ and
consider the equation

Mαwtt + ∆2w +
[
g(wt)− α divG(∇wt)

]
= [F(w) + F0, w] + p (3.1)

in Ω× (0,∞) with clamped boundary conditions

w =
∂

∂n
w = 0 on Γ× (0,∞), (3.2)

where the Airy function F(w) is a solution to the elliptic problem

∆2F(w) = −[w,w] in Ω with F =
∂

∂n
F = 0 on Γ,

and the von Karman bracket [u, v] is defined as

[u, v] = ∂2
x1u∂

2
x2v + ∂2

x2u∂
2
x1v − 2∂x1x2u∂x1x2v.

A scalar function g(s) is continuous, non-decreasing on R and g(0) = 0. In the
case of α > 0, the damping G has the form G(s, σ) = (g1(s); g2(σ)), where gi(s),
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i = 1, 2, are continuous and monotone on R and gi(0) = 0. Moreover, they have
a polynomial growth: |gi(s)| ≤ C(1 + |s|q−1) for some q ≥ 1. We also assume
that F0 ∈ H3+δ(Ω) ∩H1

0 (Ω), δ > 0 and p ∈ L2(Ω). The function F0 represents
the inner strain in the plate and p is a transverse load.

The case of α > 0 is subcritical with respect to the von Karman nonlinearity
[F(w), w].

In the case of α = 0, the von Karman nonlinearity is critical. Problem (3.1),
(3.2) possesses a unique global mild solution, i.e., generates a dynamical system
(Hα, St), where Hα = H2

0 (Ω)×Hα(Ω) and Hα(Ω) is defined by the formula

Hα(Ω) =

{
L2(Ω), α = 0

H1
0 (Ω), α > 0

. (3.3)

The dynamical system (Hα, St), generated by (3.1), (3.2), possesses a compact
global attractor A in the space Hα ≡ H2

0 (Ω)×Hα(Ω). Under certain additional
conditions on the damping terms this dynamical system is gradient and the at-
tractor has a regular structure described by Theorem 2.8. In the case of α > 0, it
follows from abstract results for second-order evolution equations with subcritical
nonlinear source (see [39]). In the case of α = 0, the von Karman nonlinearity
becomes critical and the proof is based on Theorem 2.2 (the compensated com-
pactness method). Let the following hold true.

Assumption 3.1. Assume that

(i) in case of α = 0: there exist m,M0 > 0 such that

0 < m ≤ g′(s) ≤M0[1 + sg(s)], s ∈ R, (3.4)

(ii) in case of α > 0: g(s) either has a polynomial growth at infinity, or satisfies
(3.4) and there exists 0 ≤ γ < 1 such that gi satisfies the inequality

0 < m ≤ g′i(s) ≤M [1 + sgi(s)]
γ , s ∈ R, i = 1, 2.

Then the dynamical system, generated by problem (3.1), (3.2), is asymptot-
ically quasi-stable, which yields the existence of a finite dimensional attractor,
its regularity, and the existence of an exponential attractor. All the statements
follow from abstract results in Section 2.4. See [41] for more details.

3.2. Von Karman equation with nonlinear boundary damping. We
consider equation (3.1) in a bounded domain Ω ⊂ R2 with appropriate initial
conditions and dissipative hinged boundary conditions:

w = 0, ∆w = −g0

(
∂

∂n
wt

)
on Γ× (0, T ). (3.5)

For problem (3.1), (3.5), we add an assumption on the nature of the boundary
damping. A scalar function g0(s) is assumed to be globally Lipschitz and strictly
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increasing on R and equal to zero at zero. Then, under the same conditions as for
problem (3.1), (3.2), there exists a unique global mild solution to problem (3.1),
(3.5). To study asymptotic dynamics of problem (3.1), (3.5), we additionally
assume that

g(s) = g1s+ |s|m−1s and G(s, σ) = G1(s;σ) + (|s|m−1s;σm−1σ) (3.6)

and at the same time g1 > 0.
The phase space of the dynamical system in the case of α > 0 is the space H ≡[

H2(Ω) ∩H1
0 (Ω)

]
×H1

0 (Ω), and the corresponding dynamical system generated
by problem (3.1), (3.5) is denoted by (H,St). The system (H,St) possesses a
compact global attractor of regular structure described in Theorem 2.8.

The phase space in the case of α = 0 isH0 ≡
[
H2(Ω)∩H1

0 (Ω)
]
×L2(Ω), and the

regularizing effect of rotational inertia is absent. Under the above assumptions,
the dynamical system (H0, St) is gradient. To prove the asymptotic quasi-stability
and, consequently, the existence of a finite dimensional attractor one needs to
require that g(s) is globally Lipschitz. Details can be found in [41].

One can also consider the problem with boundary dissipation, with hinged or
simply supported boundary conditions (see [41]). As it is noted in [43], the fol-
lowing questions remain open for von Karman equations (3.1): general theory in
the case of non-conservative forces destroying the gradient structure; asymptotic
behavior in the case of localized (in a boundary layer) damping.

3.3. Thermoelastic von Karman plates. The problem has the form{
Mαwtt + ∆2w − β∆θ = B(w), w|t=0 = w0, wt|t=0 = w1,

θt + η∆θ + β∆wt = 0, θ|t=0 = θ0,

where w is the transverse displacement of the plate and θ is its temperature.
The system is subjected to clamped, hinged, or simply supported boundary

conditions for the displacement and Dirichlet boundary conditions for the temper-
ature. The state spaces for (w,wt) and for θ are Hα and L2(Ω) respectively. The
system is gradient and asymptotically quasi-stable for α ≥ 0, β ≥ 0. Moreover,
the structure of the von Karman nonlinearity allows to prove asymptotic quasi-
stability simultaneously in subcritical (α > 0) and critical (α = 0) cases deriving
the estimates independent of the parameters of the problem. Thus, in addition
to standard corollaries from quasi-stability (see Theorem 2.27), we obtain upper
semicontinuity of the family of attractors with respect to the parameters (α, β)
(see Theorem 2.9). Details can be found in [40] and [41, Chapter 11] (see also
the references therein). The case of the Berger nonlinearity is considered in [7].

4. Kirchhoff–Boussinesq plate

4.1. Kirchhoff–Boussinesq system with internal damping. Using the
notations introduced in Section 3, we consider the equation

Mαwtt + ∆2w + a(x)
[
g(wt)− α divG(∇wt)

]
= div

[
|∇w|2∇w

]
+ P (w) (4.1)
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with clamped boundary conditions (3.2). The damping functions g : R 7→ R+, G :
R2 7→ R2

+ satisfy condition (3.6), and the nonlinearity P has the form σ∆[w2]−
%|w|l−1w, where σ > 0, % ≥ 0, and l ≥ 1.

Well-posedness for α > 0 can be proved in the standard way, since the nonlin-
ear term possesses the property div |∇w|2∇w ∈ H−1(Ω) for solutions with finite
energy w, i.e., is critical. The corresponding results can be found in [39]. The
case of α = 0 is more delicate. Its analysis requires non-standard arguments and
relies essentially on the linearity of the damping function.

The main difficulty is created by the feedback force div
[
|∇w|2∇w

]
, which

does not belong to L2(Ω) for finite energy solutions. In the case of α = 0,
there exists a weak solution to (3.2), (4.1). If g(s) is linear, the weak solution is
unique and continuously depends on initial data (see [39, Chapter 7]). As it was
mentioned in [43], the uniqueness of weak solutions to (3.2), (4.1) in the case of
α = 0 and nonlinear damping is an open question.

In the case of α > 0, problem (3.2), (4.1) generates the dynamical system
(H,St) on the phase space H = H ≡ H2

0 (Ω)×H1
0 (Ω). If also either the assump-

tions
m ≤ 3, % > 0, l ≤ m, inf

x∈Ω
{a(x)} > 0

or the assumptions
m < 3, % = 0, inf

x∈Ω
{a(x)} � 1

hold true, the dynamical system (H,St) possesses a compact global attractor A.
If the constant G1 in (3.6) is positive, the dynamical system is asymptotically
quasi-stable, and, consequently, the fractal dimension of the attractor A is finite
and the dynamical system (H,St) possesses a generalized fractal exponential
attractor (see Definition 2.16). The proofs can be found in [39, Chapter 7]),
where the problem is considered under more general assumptions on the damping
terms.

In the case of α = 0, the phase space is H0 ≡ H2
0 (Ω)×L2(Ω). If the damping

is linear (g(s) = s) and

σ2 <
1

4
kmin{1, k}, k ≡ inf

Ω
a(x) > 0,

then the dynamical system (H0, St) possesses a compact global attractor A. To
prove this result, one uses the Ball method (see Theorem 2.3), which requires the
linearity of the damping term. In the case of σ = 0, it is easy to see that the
energy is a strict Lapunov functional and the corresponding dynamical system
is gradient. Since the nonlinearity is supercritical, the quasi-stability method
cannot be applied without additional information about the attractor, however,
quasi-stability plays an important role in investigation of asymptotic dynamics
of strong solutions. In the phase space Hst =

[
H4(Ω) ∩ H2

0 (Ω)
]
× H2

0 (Ω), the
nonlinearity is only critical (for details, see [39]).

4.2. Kirchhoff–Boussinesq plates with boundary damping. Equa-
tion (4.1) in Subsection 4.1 can be considered with dissipative hinged boundary
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conditions (3.5). The functions of internal damping g and G satisfy (3.6). The
boundary damping, as in the case of the von Karman equation, satisfies g0(s) ∼
g2s+ |s|q−1s, q ≥ 1. The nonlinearity P (w) has the same form as in (3.2), (4.1).

In the case of α > 0, the proof of well-posedness is standard, while the case of
α = 0 is more subtle. Though the existence can be established for the damping
of general form, the proof of the uniqueness requires linearity of the damping.
Moreover, the continuous dependence on initial conditions requires the reversibil-
ity of the dynamics, which does not allow to consider boundary damping. From
this point of view, most questions concerning the boundary damping remain open
for the case of α = 0.

To study the asymptotic dynamics for the case of α > 0, one uses the same
methods and obtains the same results as for the von Karman equation with
boundary dissipation (see Subsection 3.2 and Section 10.3 in [41]). The asymp-
totic behavior of system (3.5), (4.1) in the case of α = 0 is an open question. For
details, see [37,42].

5. Elastic plates models with structural damping depending on
the state

We consider the problem{
µ∂ttu+ σ(u)∂tu+ ∆2u+ ϕ(u) = f(x), x ∈ Ω, t > 0,

u|∂Ω = ∆u|∂Ω = 0, u(0) = u0, ∂tu(0) = u1

(5.1)

in a bounded domain Ω in R2 with a smooth boundary ∂Ω. The function σ ∈
Liploc(R) is positive and f ∈ L2(Ω), µ > 0. Problem (5.1) describes nonlinear
dynamics of elastic plates. Here u denotes the displacement of a point of the
plate with respect to the equilibria, σ(u)∂tu denotes friction in the system, the
term f − ϕ(u) represents nonlinear external forces.

Remark 5.1. Depending on the form of the nonlinearity u 7→ ϕ(u), the prob-
lem describes various plate models.

• Kirchhoff model: ϕ ∈ Liploc(R) satisfies the conditions

lim inf
|s|→∞

ϕ(s)

s
> −λ2

1,

where λ1 is the first eigenvalue of the Laplace operator with the Dirichlet
boundary conditions;

• the von Karman model: ϕ(u) = [u, v(u) + F0], see Section 3 for details;

• the Berger model:

ϕ(u) =

[
κ

∫
Ω
|∇u|2dx− Γ

]
∆u,

where κ > 0 and Γ ∈ R.
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Problem (5.1) can be rewritten as an abstract Cauchy problem

µ∂ttu+K(u)∂tu+Au+ F (u) = 0, u|t=0 = u0, ∂tu|t=0 = u1. (5.2)

The assumptions on the operators in (5.2) can be found in [33].

In the case of µ > 0, problem (5.2) possesses a unique global weak solution
and generates a dynamical system (H, Sµ(t)) in the space H = D(A1/2)×H.

If µ = 0, problem (5.2) generates a dynamical system
(
D(A1/2), S(t)

)
.

To prove the existence of attractors for the dynamical systems (H, Sµ(t)) and
(D(A1/2), S(t)), one can use a version of the method from [89] (see Theorem 2.2).
Under the conditions of additional regularity of the mapping F [33], the dynam-
ical systems (H, Sµ(t)) and (D(A1/2), S(t)) are quasi-stable (the first one is also
asymptotically quasi-stable), which allows us to obtain additional properties of
the attractor, described in Theorems 2.15, 2.26. Moreover, the attractors Aµ of
(5.2) tend in some sense to the attractor of the singular limit as µ→ 0 [33].

Model (5.2) can be rewritten in a separable Hilbert space H as a problem
with strong nonlinear damping

∂ttu+D(u, ∂tu) +Au+ F (u) = 0, t > 0; u|t=0 = u0, ∂tu|t=0 = u1. (5.3)

This problem can have various applications in the plate dynamics theory. For
instance, it can be assumed that A = (−∆D)2, where ∆D is the Laplace operator
with the Dirichlet boundary conditions, the operator D(u, ut) can be as follows:

D(u, ut) = ∆ [σ0(u)∆ut]− div [σ1(u,∇u)∇ut] + g(u, ut),

where σ0(s1), σ1(s1, s2, s3) and g(s1, s2) are locally Lipschitz functions of the
variables si ∈ R, i = 1, 2, 3. The detailed description of assumptions on the
parameters of the problem is given in [34]. The dynamical system (H, S(t))
generated by (5.3) in the space H = D(A1/2) × H possesses a compact global
attractor A, which has a finite fractal dimension. Besides, the system (H, S(t))
possesses a (generalized) fractal exponential attractor Aexp with finite fractal
dimension in the space H̃ = Hθ × H−1, where for 1/2 ≤ θ ≤ 1 Hθ = (H2θ ∩
H1

0 )(Ω), and for 0 < θ < 1/2 Hθ = H2θ
0 (Ω). These results are the corollary of

the asymptotic quasi-stability of the dynamical system (see Theorem 2.26).

6. Problems of thermo- and viscoelasticity for the Berger
model

In the framework of this model, it is assumed that the plate has the constant
thickness and its mean surface, when in equilibrium, occupies a bounded domain
Ω ⊂ R2 with a smooth or rectangle boundary ∂Ω. We consider the system of
integro-differential equations, which describes thermo-viscoelastic oscillations of
a Berger plate:

utt + k1(0)∆2u+

∫ +∞

0
k′1(s)∆2u(t− s) ds+ ν∆v



470 Igor Chueshov, Tamara Fastovska, and Iryna Ryzhkova

= p+M

(∫
Ω
|∇u|2 dx

)
∆u, (6.1)

vt − ω∆v −
∫ +∞

0
k2(s)∆v(t− s)ds = ν∆ut, (6.2)

u = k1(0)∆u+

∫ +∞

0
k′1(s)∆u(t− s) ds = 0, x ∈ ∂Ω, t ≥ 0, (6.3)

v = 0, x ∈ ∂Ω, t ∈ R, (6.4)

u|t≤0 = u0(−t,x), v|t≤0 = v0(−t,x), x ∈ Ω, (6.5)

where u(t,x) is the vertical displacement of a point on the mean surface, v(t,x)
is the temperature variation. To describe the process of heat conduction the
equation of Gurtin–Pipkin (ω = 0) [80] or Coleman–Gurtin type (ω ∈ (0, 1)) [62]
is used instead of the classical Fourier model (ω = 1). The parameter ν > 0
describes a relation between the displacement and the temperature.

Having introduced the notations

µ1(s) = −k′1(s), µ2(s) = −(1− ω)k′2(s),

and additional variables of the Dafermos type [65],

ηt(s) = u(t)− u(t− s), ηt(s) =

∫ s

0
v(t− y)dy,

one can study the problem in the phase space

H = H2 ∩H1
0 (Ω)× L2(Ω)× L2(Ω)× L2

µ1(R+;H2 ∩H1
0 (Ω))× L2

µ2(R+;H1
0 (Ω))

(for more details about the method of the phase space extension and the definition
of the component spaces, see Subsection 7.2).

It is assumed that

µi(s) ∈ C1(R+) ∩ L1(R+) ∩ C[0,+∞), i = 1, 2, µi(s) ≥ 0,

and there exist δi > 0 such that

µ′i(s) + δiµi(s) ≤ 0,

and M(z) ≡
∫ z

0
M(ξ)dξ ≥ −az − b, a ∈ (0, λ1), b ∈ R,

M(z) ∈ C2(R+).

Problem (6.1)–(6.5) is well-posed in the extended phase space in the sense of
generalized solutions. The dynamical system (H, St) generated by (6.1)–(6.5)
possesses a finite dimensional compact global attractor A [113], which follows
from the asymptotic quasi-stability (see Theorem 2.26).
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7. Mindlin–Timoshenko model

7.1. Pure elasticity. We consider a domain Ω ⊂ R2 with a sufficiently
smooth boundary Γ, which is occupied by the mean plane of the plate in the
equilibrium. The Mindlin–Timoshenko system describing the dynamics of thin
plates, if the effects of transverse shear (see [95, Chapter 1] and references therein)
are taken into account, has the form

α (vtt + α1vt)−Av + µ(v +∇w) + v
[
βw + h(|v|2)

]
= 0, (7.1)

wtt + α2wt − µdiv(v +∇w) + h0(w) = 0. (7.2)

Here v(x, t) = (v1(x, t), v2(x, t)) is a vector function, whose components represent
the angles of deflection of the cross-sections of the plate (these variables are
responsible for the transverse shear effects), while the scalar function w(x, t)
denotes the transverse displacement of the mean plane of the plate. The terms
αα1vt and α2wt describe the structural damping (with intensities α1 > 0 and
α2 > 0). The parameter α > 0 is the rotational inertia of the cross-sections, µ >
0 is the shear modulus. From the mechanical point of view, the limit case µ →
+0 corresponds to in-plane oscillations, while µ → +∞, to the absence of the
shear modulus. The vector-function

f(v, w) = (v1; v2)
[
βw + h

(
|v1|2 + |v2|2

)]
and the scalar function h0(w) denote external forces. The peculiarity of the model
is in the presence of the non-conservative term βvw, i.e., the term which cannot
be represented as a potential operator. This means that the energy of the system
is not monotone. The operator A has the form

A =

∂2
x1 + 1−ν

2 ∂2
x2

1+ν
2 ∂2

x1x2

1+ν
2 ∂2

x1x2
1−ν

2 ∂2
x1 + ∂2

x2

 , (7.3)

where 0 < ν < 1 is the Poisson ratio. Equations (7.1), (7.2) are supplemented
with the Dirichlet boundary conditions and appropriate initial conditions.

The Mindlin–Timoshenko hypotheses and the corresponding equations can be
found in [94] and [95]. The asymptotic behavior of the solutions to the Mindlin–
Timoshenko problems under various assumptions on the external forces, param-
eters, and the damping type was studied in [36] and [39].

Appropriate restrictions on the growth and properties of antiderivatives for
the functions h(s) and h0(s) from class C1 are formulated in [36] and [39]. Under
these assumptions, the result on the well-posedness of problem (7.1), (7.2) holds
true in the energy space in the variational sense [36].

Under additional assumptions on h(s) and h0(s) (see [39]) for problem (7.1),
(7.2), the theorem on the existence of a compact global attractor in the energy
space holds true.

In the limit case κ→∞, the attractors of system (7.1), (7.2) are close to the
attractor of the Kirchhoff–Boussinesq system

(1− α∆)utt + (α2 − αα1∆)ut + ∆2u− div
[
h(|∇u|2)∇u

]
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− β

2
∆
[
u2
]

+ h0(u) = 0,

u(x, t) = 0, ∇u(x, t) = 0 on Γ× R+

in the sense of singular limit.
The following problem with the weak damping is considered in [39]:

αvtt + α1g(vt)−Av + µ(v +∇w) = −f1(v), (7.4)

wtt + α2g0(wt)− µdiv(v +∇w) = −f2(w). (7.5)

Under certain assumptions (see [39]), the dynamical system, generated by prob-
lem (7.4), (7.5), possesses a compact global attractor in the phase space. If,
moreover, sgi(s) ≥ m|s|l for any |s| ≥ 1 and some l > p−1, the fractal dimension
of the attractor is finite.

7.2. Thermo- and viscoelasticity. The system of integro-differential
equations for the nonlinear thermo-viscoelastic Mindlin–Timoshenko problem has
the form (comp. (7.1)–(7.5)):

αvtt − [λ∞ + a(0)]Av −
∫ ∞

0
a′(s)Av(t− s)ds+ b(0)(v +∇w) (7.6)

+

∫ ∞
0

b′(s)[v +∇w](t− s)ds+ β∇θ +∇vΦ(v) = 0, (7.7)

wtt − b(0) div(v +∇w)−
∫ ∞

0
b′(s) div[v +∇w](t− s)ds+ g(w) = 0, (7.8)

γθt −
∫ ∞

0
κ(s)∆θ(t− s)ds+ β div vt = 0, (7.9)

and is supplemented with the Dirichlet boundary conditions and appropriate ini-
tial conditions. Here the operator A is defined by formula (7.3), the vector func-
tion ∇vΦ(v) = (∂v1Φ(v1, v2), ∂v2Φ(v1, v2)) and the scalar function g(w) describe
external loads, λ∞, α, β, γ are positive constants.

In order to investigate the problem by the dynamical systems theory methods,
system (7.6)–(7.8) is transformed into the form

αvtt − λ∞Av − 1

ω

∫ ∞
0

λω(s)Aφds+
µ∞
ω

(v +∇w)

+
1

ω

∫ ∞
0

µω(s)[φ+∇ξ]ds+ β∇θ +∇vΦ(v) = 0, (7.10)

wtt −
µ∞
ω

div(v +∇w)− 1

ω

∫ ∞
0

µω(s) div[φ+∇ξ]ds+ g(w) = 0, (7.11)

γθt −
1

ε

∫ ∞
0

ηε(s)∆τds+ β div vt = 0, (7.12)

θ = τt + τs, (7.13)

vt = φt + φs, (7.14)

wt = ξt + ξs (7.15)
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by means of rescaling the kernels a(s), b(s), κ(s) and introducing the notations

λω(s) =
1

ω
λ
( s
ω

)
= − 1

ω
a′
( s
ω

)
,

µω(s) =
1

ω
µ
( s
ω

)
= − 1

ω
b′
( s
ω

)
,

ηε(s) =
1

ε
η
(s
ε

)
= −1

ε
κ′
(s
ε

)
,

as well as definition of new variables of Dafermos type τ , φ and ξ [65]:

τ(x, t, s) =

∫ t

t−s
θ(x, ξ)dξ =

∫ s

0
θ(x, t− ξ)dξ, s ≥ 0, t > 0, (7.16)

φ(x, t, s) = v(x, t)− v(x, t− s), s ≥ 0, t > 0, (7.17)

ξ(x, t, s) = w(x, t)− w(x, t− s), s ≥ 0, t > 0, (7.18)

for which we obtain from (7.16)–(7.18) three additional equations in system
(7.10)–(7.15). Introduction of auxiliary variables and extension of the phase space
allows us to overcome the problem that system (7.6)–(7.8) is non-autonomous.

The Hilbert spaces L2
ρ(R+, H l(Ω)) are the spaces of functions on R+ with

values in Hm (m ∈ R), which are square integrable with the weight ρ.
The kernels η, λ, µ in system (7.10)–(7.15) are continuously differentiable,

non-negative, exponentially decreasing, and µ can be estimated from above by
the kernel λ (see [70] for details).

The phase space of the problem is as follows:

Hω,ε = D(A1/2
ω )× [L2(Ω)]3 × L2(Ω)×B× L2

η(R+, H1
0 (Ω)),

where
B = L2

λ(R+, [H1
0 (Ω)]2)× L2

µ(R+, H1
0 (Ω)).

Under appropriate assumptions on the growth of nonlinearities and the bound-
edness from below of their antiderivatives (see [70] for details), problem (7.10)–
(7.15) possesses a unique generalized solution and generates a dynamical system
on the phase space Hω,ε. This dynamical system possesses a compact global
attractor Aω,ε of finite fractal dimension. The asymptotic behavior of system
(7.10)–(7.15) in the limit case ω → 0, ε → 0 can be described by the system of
Kirchhoff–Boussinesq type

(α2 − α1∆)wtt + λ1∆2wt + λ∞∆2w + β∆θ + div[∇Φ(−∇w)] + g(w) = 0,

γθt − η1∆θ + β∆wt = 0

with clamped boundary conditions (3.2) and constant zero temperature on the
ends.

Along with problem (7.10)–(7.15), the problem with viscous damping without
memory is considered in [69]:

vtt + α1vt −Av + µ(v +∇w) + β∇θ +∇vΦ(v) = 0, (7.19)
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wtt + α2wt − µdiv(v +∇w) + g(w) = 0, (7.20)

γθt −
1

ω

∫ t

−∞
κ(
t− s
ω

)∆θ(x, s) ds+ β div vt = 0. (7.21)

If the assumptions, analogous to those from the previous case, hold true, then
for any ω > 0 problem (7.19)–(7.21) generates a dynamical system possessing
a compact global attractor Aω of finite fractal dimension. In the case of ω →
0, the global attractor is close in an appropriate sense to the attractor of the
Mindlin–Timoshenko system

vtt + α1vt −Av + µ(v +∇w) + β∇θ +∇vΦ(v) = 0,

wtt + α2wt − µdiv(v +∇w) + g(w) = 0,

γθt − η1∆θ + β div vt = 0

with clamped boundary conditions and zero initial conditions (see [69]).

8. Fluid-plate/shell interaction models

8.1. Models description. In this section, we consider a number of mod-
els arising from interaction of 3D fluid and 2D elastic body. A fluid motion is
described by the linearized equations (e.g., Navier–Stokes, Euler), and for the
plate components we use several models that can be nonlinear. Thus, we assume
that “large” deflections of the plate produce a “small” effect on the fluid. This
corresponds to a system, in which a container with fluid is large enough with
respect to the size of the plate.

Let O ⊂ R3 be a bounded domain with a smooth boundary ∂O. We assume
that ∂O = Ω ∪ S, where Ω ⊂ {x = (x1;x2; 0) : x′ ≡ (x1;x2) ∈ R2} is a flat
domain with a smooth contour Γ = ∂Ω and S is a surface in R3

− = {x3 ≤ 0}. We
denote by n the outer normal to ∂O. Note that n = (0; 0; 1) on Ω. The surface
S corresponds to the rigid walls of the fluid container and Ω is occupied by an
elastic plate or a shell placed over the fluid.

To describe the fluid motion, we use the linearized Navier–Stokes equations in
the domain O for the fluid velocity field v = v(x, t) = (v1(x, t); v2(x, t); v3(x, t))
and the pressure p(x, t):

vt − ν∆v +∇p = Gf in O × (0,+∞) , (8.1)

div v = 0 in O × (0,+∞), (8.2)

where ν > 0 is the dynamical viscosity of the fluid and Gf is a volume force.
We denote by Tf (v) the surface force acting on the plate from the fluid; it

equals Tn|Ω, where T = {Tij}3i,j=1 is a stress tensor of the fluid,

Tij ≡ Tij(v) = ν
(
vixj + vjxi

)
− pδij , i, j = 1, 2, 3.

Since n = (0; 0; 1) on Ω, we have

Tf (v) = (ν(v1
x3 + v3

x1), ν(v2
x3 + v3

x2), 2ν∂x3v
3 − p).
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The exact form of this force, as well as the boundary conditions on a part of
the boundary Ω for the Navier–Stokes equations, depends on a plate/shell model
chosen.

To describe a velocity field of incompressible fluid, we use the space

X =
{
v = (v1; v2; v3) ∈ [L2(O)]3 : div v = 0, γnv ≡ (v, n) = 0 on S

}
endowed with L2-norm. Details on the Navier–Stokes equations can be found
in [91,127].

8.1.1. Full von Karman (Marguerre–Vlasov) equations. The full von
Karman (Marguerre–Vlasov) equations describe a shallow shell, which moves
both in longitudinal and transversal directions [94]. To model interaction of the
shell with the fluid, we supplement (8.1) and (8.2) with the non-slip boundary
conditions on the fluid velocity field v = v(x, t):

v = 0 on S, v ≡ (v1; v2; v3) = (u1
t ;u

2
t ;wt) on Ω, (8.3)

where u = u(x, t) ≡ (u1;u2;w)(x, t) is the displacement of the shell occupying Ω:
w states for the transversal displacement, ū = (u1;u2) denotes in-plane displace-
ment.

In this model, rotational inertia of the shell filaments and in-plane accelera-
tions are accounted for:

Mα(wtt + γwt) + ∆2w + trace {KN (u)} − div {N (u)∇w}
= G3 − 2ν∂x3v

3 + p, (8.4)

ūtt = div {N (u)}+
(
G1 − ν(v1

x3 + v3
x1);G2 − ν(v2

x3 + v3
x2)
)
, (8.5)

where Mα = 1− α∆, K = diag (k1, k2), and

N (u) ≡
(
N11 N12

N12 N22

)
= C(ε0(ū) + wK + f(∇w))

with ū = (u1;u2), C(ε) = D [µ trace εI + (1− µ)ε] and

ε0(ū) =
1

2
(∇ū+∇T ū), f(s) =

1

2
s⊗ s, s ∈ R2.

All the constants are assumed to be positive, except of γ ≥ 0, which is the
intensity of viscose damping of the shell material. We also denote by Gsh ≡
(G1;G2;G3) a (known) external force. The equations are supplemented with the
clamped boundary conditions:

u1
∣∣
∂Ω

= u2
∣∣
∂Ω

= 0 (8.6)

and

w|∂Ω =
∂w

∂n

∣∣∣∣
∂Ω

= 0. (8.7)
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We complement (8.1)–(8.7) with the initial data of the form

v|t=0 = v0, u|t=0 = u0, ut|t=0 = u1, (8.8)

where ū = (u1;u2). Here v0 = (v1
0; v2

0; v3
0), ui = (u1

i ;u
2
i ;wi).

Equations (8.2) and (8.3) imply the compatibility condition∫
Ω
w(x′, t) dx′ = 0 for all t ≥ 0, (8.9)

which can be interpreted as a fluid volume conservation.
For this model, we use the following space as a phase space:

H = {(v0;u0;u1) ∈ X ×W × Y : v0 = u1 on Ω} ,

W = H1
0 (Ω)×H1

0 (Ω)× Ĥ2
0 (Ω), Y = L2(Ω)× L2(Ω)× Ĥ1

0 (Ω).

There exists a unique weak solution to problem (8.1)–(8.9) (provided the
right-hand side is smooth enough). Smoothing of initial velocities of longitudinal
component ūt ∈ L2(0, T ;H1/2(Ω)) takes place. The proof of the existence uses
an idea from [12]. The strong super-criticality of full von Karman equations
requires an application of the Sedenko method [121] and Bresis–Gallouet type
inequalities to prove the uniqueness. The energy equality is proved by means of
finite difference relations in the same way as in [90]. In the case of α = 0, one
can prove the existence of a weak solution, however, for proving the uniqueness,
the Sedenko method fails because of strong super-criticality of nonlinearity. It is
an open question by now. The model was studied in [53].

8.1.2. Simplified model for pure in-plane deformations. Models of
this type arise in problems of blood flows in large arteries [112]. The transversal
displacement of the plate w is assumed to be small with respect to its in-plane
displacement (u1;u2). Thus, we obtain the following boundary conditions on the
fluid velocity field v = v(x, t):

v = 0 on S, v ≡ (v1; v2; v3) = (ūt; 0) ≡ (u1
t ;u

2
t ; 0) on Ω, (8.10)

where ū = ū(x, t) ≡ (u1(x, t);u2(x, t)) is the in-plane displacement of the plate
placed on Ω. Since v3(x1;x2; 0) = 0 for (x1;x2) ∈ Ω because of (8.10), we have
v3
xi = 0 on Ω, i = 1, 2. Thus, after rescaling we obtain the following equations for

the longitudinal displacement ū = (u1;u2):

uitt −∆ui − λ∂xi [div ū] + νvix3 |x3=0 + f i(ū) = 0, i = 1, 2, (8.11)

where λ is a nonnegative parameter and a nonlinear feedback force is potential.
We impose clamped boundary conditions (8.6) on the displacement ū = (u1;u2)
on Γ = ∂Ω. The problem with λ = 0, f i(ū) ≡ 0 and strong (Kelvin–Vogt) internal
damping present in the plate equation was considered in [79]. In contrast to [79],
any type of mechanical or thermal damping is absent in the plate equation for
this model.
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If nonlinearity is potential and the potential Φ(ū) satisfies a number of as-
sumptions (see [21]), then there exists a unique weak solution to this problem in
the space

H = {v ∈ X : (v, n) = 0 on Ω} ×
[
H1

0 (Ω)
]2 × [L2(Ω)]2 .

In the linear case (Φ(ū) ≡ 0), the problem generates an exponentially stable
C0-semigroup of contractions in H. Note that this property improves the result
obtained in [79], where only strong stability (for individual trajectories) is proved.
The model described above was studied in [21]. Recently the stochastic version
of this problem was studied in [55].

8.1.3. Simplified model for pure transversal displacements. For
this model, a special structure of the longitudinal displacement ū = ū(x, t) ≡
(u1(x, t);u2(x, t)) is assumed in (8.4). It is considered as a function of the
transversal displacement w [94, 128]. Here it is also assumed that α = 0. If we
formally discard equation (8.5), we arrive to the following boundary conditions
for the fluid velocity field v = v(x, t):

v = 0 on S; v ≡ (v1; v2; v3) = (0; 0;wt) on Ω. (8.12)

Equation (8.2) implies ∂x3v
3 = 0, thus the third (transversal) component of the

fluid stress tensor Tf (v) exactly equals the fluid pressure p on Ω. Finally, the
transversal displacement of the plate w = w(x, t) satisfies the equation

wtt + ∆2w + F(w) = Gpl + p|Ω in Ω× (0,∞),

where Gpl is a prescribed force acting on the plate, F(w) is a nonlinear feed-
back force, which assumed to be potential and locally Lipschitz from H2−ε

0 (Ω)
to H−1/2(Ω) with some ε > 0. These assumptions are satisfied for a number
of nonlinearities important in elasticity such as Kirchhoff’s, von Karman’s and
Berger’s nonlinearities. Details can be found in [52].

The phase space of the system has the form

H =

{
(v0;w0;w1) ∈ X ×H2

0 (Ω)× L2 : v3
0 = w1 on Ω,

∫
Ω
w0 =

∫
Ω
w1 = 0

}
.

Provided the right-hand side is smooth enough, there exists a unique weak solu-
tion to the problem. In the linear case (Gf ≡ 0, Gpl ≡ 0, F(w) ≡ 0), the problem
generates a C0 exponentially stable semigroup Tt on H. Smoothing of the plate
velocity takes place and wt ∈ L2(0, T ;H1/2(Ω)).

We emphasize that even in the linear case we cannot decompose system (8.1)–
(8.8) into two equation sets, which describe the longitudinal and the transver-
sal displacements separately, because of the structure of the surface fluid stress
Tf (v). The point is that the equation for in-plane oscillations of the plate (8.11)
(Section 8.1.2) does not contain terms v3

xi and the model does not require any
compatibility conditions of the form (8.9) since the volume of the fluid is con-
stant. In the case of purely transversal displacements, the force exerted on the
plate by the fluid contains the pressure only. For more details, see [53].
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8.1.4. Inviscid incompressible fluid. The model considered in Sec-
tion 8.1.3 was studied in [26] for the case of inviscid incompressible fluid. In
this case, the fluid motion is described by the Euler equations:

vt + αv +∇p = Gf (t) in O × (0,+∞),

div v = 0 in O × (0,+∞),

(v, n) = 0 on S;

(v, n) = ut on Ω.

Here the fluid resistance is modeled by αv (with α ≥ 0) (see, e.g., [104]). To
obtain the result on the existence of an attractor, we need a viscose damping in
the plate equation,

wtt + γwt + ∆2w + F(w) = Gpl(t) + p|Ω in Ω× (0,∞).

The phase space and the conditions on the nonlinearity are the same as in Sub-
section 8.1.3.

8.1.5. Viscose compressible fluid. The model from Section 8.1.3 was
considered in [25] for the case of viscose compressible fluid. Thus, the fluid is
described by two quantities: the density % and the velocity field v. Provided the
fluid is isothermal, we arrive at the following equations [25]:

%t + div v = Gd in O × R+, (8.13)

vt − ν∆v − (ν + λ)∇ div v + γv +∇% = Gf in O × R+, (8.14)

(Tn, τ) = 0 on ∂O, (v, n) = 0 on ∂O \ Ω, (v, n) = wt on Ω, (8.15)

wtt + ∆2w + F(w) + T 33(v, %)|Ω = Gpl in Ω× (0,∞), (8.16)

where T is a fluid stress tensor defined by

T ij ≡ T ij(v, p) = ν
(
vixj + vjxi

)
+
[
λ div v − p

]
δij , i, j = 1, 2, 3.

The main boundary conditions on ∂O are non-penetrating ones (8.15). However,
one can consider the problem above with non-slip boundary conditions (8.12) as
well.

We use the phase space

H =
{

(%0; v0;u0;u1) ∈ L2(O)× [L2(O)]3 ×H2
0 (Ω)× L2(Ω)

}
.

Under the same conditions on the nonlinearity as in Subsection 8.1.3 and provided
ν > 0, λ ≥ 0, γ ≥ 0, the problem possesses a unique weak solution. Smoothing
of the plate velocity takes place.
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8.1.6. Unbounded container. Problems in Subsections 8.1.3–8.1.5 can be
considered for the case when the fluid occupies an unbounded domain satisfying
the Fridrichs–Poincare conditions (see [54]). A typical example of this domain
is a tube, so we can generalize our considerations for a fluid flow. In this case,
the fluid motion is described by the 3D Navier–Stokes equations linearized near a
Poiselle (or Ossen) flow a0(x). Then equation (8.1) in Subsection 8.1.3 is replaced
by

vt − ν∆v + L0v +∇p = Gf in O × (0,+∞),

where L0 is a first-order linear differential operator of the form L0v = (a0,∇)v+
Av. Here a0(x) is a smooth divergence-free field on O such that (n, a0) = 0
on ∂O, and A = A(x) is a bounded 3 × 3 matrix, x ∈ O. This problem was
considered in [54]. One can modify the models in Subsections 8.1.4, 8.1.5 in the
same way. For these models, the cases of unbounded domains were considered
together with the cases of bounded domains in [25,26].

8.2. Asymptotic behavior. An asymptotic behavior of the models with
viscose fluid from Subsections 8.1.1–8.1.3, 8.1.5 has many common features, there-
fore, we consider them together. The dynamical systems generated by the above
mentioned problems are dissipative under some standard assumptions on the non-
linearity. Dynamical systems in Subsections 8.1.2, 8.1.3, 8.1.5 are asymptotically
quasi-stable because of a special structure of the (critical) von Karman nonlinear-
ity, or because of subcriticality of the nonlinearity. Provided ε > 0, the DS from
Subsection 8.1.1 is asymptotically smooth. The full von Karman equation maps
the phase space in a space of lower smoothness (that is, is supercritical), thus we
can not prove the stabilization inequality. Since the nonlinearity is potential, one
can prove the asymptotic smoothness by means of the Ball method.

Thus, Theorems 2.8, 2.26, 2.27 imply that the dynamical systems in Subsec-
tions 8.1.2, 8.1.3, 8.1.5

(1) have compact global attractors of finite fractal dimension;

(2) the attractors have the regular structure described in Theorem 2.8;

(3) the attractors are smooth sets in the phase space;

(4) have generalized fractal exponential attractors;

(5) have finite sets of determining functionals.

The dynamical system from Subsection 8.1.1 has a compact global attractor of
regular structure provided ε > 0 and external forces have the form Gf ≡ 0, G1 =
G2 ≡ 0, G3 ≡ g ∈ H−1(Ω).

One can use the same methods for the problem in Subsection 8.1.4, but then
the result on the existence of an attractor can be obtained for subcritical nonlin-
earities only because of the lack of smoothing of the plate velocity. A reduction
of the entire problem to the damped plate equation is used to treat critical non-
linearities in this problem. We have the following result [26]: if Gpl ≡ 0, Gf ≡ 0,



480 Igor Chueshov, Tamara Fastovska, and Iryna Ryzhkova

α > 0, γ > 0, then the dynamical system in Subsection 8.1.4 is gradient, dissipa-
tive and possesses a weak attractor (that is, the uniform attraction takes place in
a weak topology, not with respect to the norm). If the potential of nonlinearity
is continuous on H2−ε

0 (Ω) for some ε > 0, the weak attractor A is also a compact
global attractor and it has a regular structure described in Theorem 2.8.

9. Interaction of elastic plates with gas

In this section, we consider problems of interaction of a 2D plate with a
gas occupying a finite or infinite domain. In the framework of this section, the
transverse oscillations of the plate are modeled by the Kirchhoff equation with von
Karman’s nonlinearity (or general critical nonlinearity). The field of gas velocities
is assumed to be potential. The survey of recent results on the interaction of
plates with gas can be found in [30,31].

9.1. Structural acoustic model. The mathematical formulation consists
of a semilinear wave equation in a bounded domain O strongly coupled with
a nonlinear equation of dynamics of an elastic Berger’s or von Karman’s plate
(possibly, under presence of thermal effects) on the plane part of the boundary O.
This class of problems, known as structural acoustic models, appears in modeling
the gas pressure in acoustic cameras surrounded by a combination of rigid and
elastic walls.

Let O ⊂ R3 be a bounded domain with a sufficiently smooth boundary ∂O.
We assume that ∂O = Ω ∪ S, where Ω ∩ S = ∅, Ω ⊂ {x = (x1;x2; 0) : x′ ≡
(x1;x2) ∈ R2} is bounded by a smooth contour Γ = ∂Ω, and S is a surface lying
in the half-space R3

− = {x3 ≤ 0}. The outward normal to ∂O is denoted by n.
The variable v stands for the transverse displacement of the plate and z is the
velocity potential of the gas medium. They satisfy the coupled system

ztt + g(zt)−∆z + f(z) = 0 in O × (0, T ),

∂z

∂n
= 0 on S × (0, T ),

∂z

∂n
= αvt in Ω× (0, T ),

vtt + b(vt) + ∆2v +B(v) + βzt|Ω = 0 in Ω× (0, T ),

v = ∆v = 0 on ∂Ω× (0, T )

and the initial conditions. Here g(s) and b(s) are non-decreasing functions, de-
scribing dissipative effects of the model, and the term f(z) is a nonlinear feedback
acting on the wave component, B(v) is von Karman’s or Berger’s nonlinearity,
α, β > 0.

The well-posedness of the problem follows from the abstract theory for in-
teracting systems of the second order [96, Section 2.6] (see also [41, Chapter 6]).
Asymptotic dynamics of the problem was investigated in [41, Section 12] from
the point of view of quasi-stable systems for the von Karman plates and in [8], for
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the Berger plates. Various cases, when the flexible wall is a thermoelastic plate,
are studied in [7] and [41, Section 12].

9.2. Interaction of plates with gas flow. The objects considered occupy
the domain R3

+ = {(x, y, z) : z ≥ 0}. The plate occupies a bounded domain Ω ⊂
R2
{(x,y)} = {(x, y, z) : z = 0} with a smooth boundary ∂Ω = Γ. It is fastened in

a “ large” rigid body occupying the domain R2 \Ω. A flow of gas moves over the
body in the opposite to the axis x direction with the speed U 6= 1. We consider
the equations normalized in such a way that U is the Mach number, i.e., 0 ≤ U <
1 corresponds to subsonic speeds and U > 1, to supersonic speeds.

In most works, a nonlinear Kirchhoff plate with the clamped boundary condi-
tions is considered. However, all the results obtained are true for hinged boundary
conditions without essential changes in the proof. Far more complicated is the
case of combined free-clamped boundary conditions. Some results for this case
can be found in [47].

We denote the transverse displacement of the plate (in the direction of the z-
axis) by u, and the potential of velocities of perturbed flow by φ. These variables
satisfy the system

(1− α∆)utt + ∆2u+ f(u) =
(
∂t + U∂x

)
γ[φ] on Ω× (0, T ), (9.1)

u(0) = u0; ut(0) = u1, (9.2)

BC(u) on ∂Ω× (0, T ), (9.3)

(∂t + U∂x)2φ = ∆φ in R+ × (0, T ), (9.4)

φ(0) = φ0; φt(0) = φ1, (9.5)

∂

∂n
φ = −

[
(∂t + U∂x)u(x)

]
1Ω(x) on R2

{(x,y)} × (0, T ), (9.6)

where α ≥ 0 is the rotational inertia of the elements of the plate, f(u) is von
Karman’s or Berger’s nonlinearity, while BC(u) are boundary conditions. Prob-
lem (9.1)–(9.6) was also considered with temperature and mechanical damping
in the plate equation.

One of the key parameters, which influences the qualitative properties of the
system, is the rotational inertia α ≥ 0. In the cases of α = 0 and α > 0, the
functional spaces for weak solutions to problem (9.1)–(9.6) are different: ut ∈
L2(Ω) for the case of α = 0 and ut ∈ H1

0 (Ω) for the case of α > 0. This
makes different the arguments for proving the well-posedness and investigation
of asymptotic behavior of problem (9.1)–(9.6).

For the case of α > 0, the proof of well-posedness for the initial conditions
(u0;u1;φ0;φ1) ∈ H2

0 (Ω) × H1
0 (Ω) × H1(R3

+) × L2(R3
+) (both for subsonic and

supersonic flows) is given in [5].
The case of α = 0 is more complicated and was solved for the supersonic flow

not long ago in [46]. The phase space of the dynamical system in this case is
(u0;u1;φ0;φ1) ∈ H2

0 (Ω)× L2(Ω)×H1(R3
+)× L2(R3

+).
The main difficulty in studying the asymptotic behavior of a system of the

type “plate+gas flow” is the unboundedness of the domain occupied by gas.
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There are two methods for solving this problem. The first one is to study the
asymptotic behavior of the gas components not in the whole space but in an
arbitrary ball. The second one is to reduce the influence of a gas on the plate to
a term with delay in the equation for the plate.

The first approach was used for the systems of the type (9.1)–(9.6) with
structural [17,41,97,98] and thermal [118,120] damping. In the above-mentioned
works, the asymptotic behavior was studied in the case of subsonic gas flow (U <
1). The following results on stabilization were obtained: in general position, for
any solution to system (9.1)–(9.6) there exists a stationary point (u, 0, φ, 0) such
that

lim
t→+∞

{
‖u(t)− u‖22,Ω + ‖ut(t)‖2Ω + α‖∇ut(t)‖2Ω+

‖∇(φ(t)− φ)‖2
B+

R
+ ‖φt(t)‖2B+

R

}
= 0 (9.7)

for any R > 0, where B+
R = {x ∈ R3

+ : |x| < R}. In the case of thermoelastic
plate, in addition to the convergence (9.7), ‖θ(t)‖ → 0 holds true when t→ +∞
(here θ stands for the temperature of the plate).

The proof is based on the idea of splitting of an individual trajectory of
(9.1)–(9.6) into converging to 0 and compact components (in an arbitrary half
of a ball B+

R). If ut ∈ H1
0 (Ω) (either in view of the structure of the phase space

in the case of α > 0, or because of regularizing effects of structural (−∆ut)
or thermal damping (α = 0)), the compactness (in B+

R) of the gas component
follows from the compactness of the plate components. In the case of α = 0, there
is no regularization (see [97] for von Karman equations with viscous and static
damping and [98] for the Berger equation with viscous damping). The result is
established for smooth solutions and then extended on weak solutions by means
of the limit transition.

The second approach was fully developed in [5], however, equations with
memory were applied for description of motion of plates in a flow of gas up to
then. The asymptotic behavior of solutions to the Berger models was studied
in [6, 49]. Abstract methods of analysis of asymptotic behavior of solutions to
the retarded nonlinear PDEs were developed in [14] (see also [41]). However,
the models considered included either rotational inertia (α > 0) or structural
damping (the term of the form −ε∆ut), which assures higher regularity of ut and
subcritical nonlinearity and delay.

The reduction principle for the full system “plate+gas flow” is formulated as
follows [5].

Theorem 9.1. Let there exist R such that φ0(x) = φ1(x) = 0 for |x| > R.
Then there exists t#(R,U,Ω) > 0 such that for all t > t# a weak solution u(t) to
(9.1)–(9.6) satisfies the equation

(1− α∆)utt + ∆2u+ f(u) = p0 − (∂t + U∂x)u− qu(t), (9.8)

where

qu(t) =
1

2π

∫ t∗

0
ds

∫ 2π

0
dθ [M2

θ û](x− (U + sin θ)s, y − s cos θ, t− s).
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Here û is the extension of u by zero outside Ω; Mθ = sin θ∂x + cos θ∂y, and

t∗ = inf{t : x(U, θ, s) /∈ Ω ∀x ∈ Ω, θ ∈ [0, 2π], and s > t}

with x(U, θ, s) = (x− (U + sin θ)s, y − s cos θ) ⊂ R2.

Since the trajectories of the entire system with initial data with compact
supports coincide in some time with the trajectories of system (9.8), investigation
of the limit regimes of (9.8) allows to gain insight into the asymptotic behavior
of (9.1)–(9.6).

In what follows, we will use a conventional for systems with delay (see, e.g.,
[66]) notation ut(·) for the functions on s ∈ [−t∗, 0] of the form s 7→ u(t + s),
where 0 < t∗ < +∞ is the delay time. We consider the system with delay (which
somewhat generalizes (9.8)):

(1− α∆)utt + ∆2u+ (ε1 − ε2∆)ut + f(u) + Lu

= p0 + q(ut, t) in Ω× (0, T ), (9.9)

BC(u) on ∂Ω× (0, T ), (9.10)

u(0) = u0, ut(0) = u1, (9.11)

u|t∈(−t∗,0) = η ∈ L2(−t∗, 0;H2
0 (Ω)). (9.12)

Here f(u) is von Karman’s nonlinearity (or any other nonlinearity possessing
certain properties, for instance, subcritical), q(ut, t) is a delay term, the operator
L includes lower order derivatives not having gradient structure (for instance,
−Uux in (9.8)).

Problem (9.9)–(9.12) generates a dynamical system on the space

(u;ut;u
t) ∈ H2

0 (Ω)×Hα(Ω)(Ω))× L2(−t∗, 0;H2
0 (Ω)),

where Hα(Ω) is defined in (3.3).
In the case of the rotational inertia (α > 0) ut ∈ H1

0 (Ω), von Karman’s
nonlinearity and the delay are subcritical. If, in addition, ε2 > 0, it is easy to
show that the dynamical system generated by (9.9)–(9.12) is dissipative and the
proof of the existence of a global attractor is standard (see, e.g., [14]).

For α > 0 and ε2 = 0, the uniform dissipativity is not established and,
probably, it does not hold true. Recent results obtained for a plate with rotational
inertia interacting with the fluid [1] allow us to predict a pointwise dissipativity.
However, the method used in this work is based on the spectral properties of the
generator and can not be applied to nonlinear problems.

If the rotational inertia is neglected (α = 0) and the viscous damping (inher-
ited from interaction with a flow of gas) ut ∈ L2(Ω), the nonlinearity and the
delay become critical. The dynamical system is asymptotically smooth and, be-
ing dissipative, possesses a compact global attractor A [47, 48]. The delay term,
as well as von Karman’s nonlinearity, possesses “the compensated compactness
property”; therefore, the quasi-stability method (see Section 2.4.3) was success-
fully applied for studying the properties of the attractor of problem (9.9)–(9.12)
in [47,48].
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The results obtained mean that despite of the conservativity of system (9.1)–
(9.6) without damping there is the stabilization of the system to equilibria on any
bounded domain (for subsonic flow) since the energy of the system is dissipated
by an unbounded volume of gas at infinity. However, this phenomena does not
take place for an arbitrary unbounded domain, there may exist periodic solutions
for some configurations [29].

10. Wave equation with damping

This type of models was studied by many authors (see, e.g., [84] and references
in [38,39,44,45]). We consider two situations as examples.

10.1. Wave equation with nonlinear damping. We consider the fol-
lowing wave equation in a bounded domain Ω ⊂ R3 with Dirichlet boundary
conditions and appropriate initial conditions:

wtt −∆w + a(x)g(wt) = f(w) in Ω× (0, T ); w = 0 on Γ× (0, T ), (10.1)

where T > 0 may be finite or infinite. Let the damping have the structure g(s) =
g1s+ |s|m−1s for some m ≥ 1, and also f(w) ∼ −|w|p−1w, where either 1 ≤ p ≤
3, or 3 < p ≤ min

{
5, 6m

m+1

}
. A nonnegative function a ∈ C1(Ω) denotes the

intensity of the damping (for more details on the assumptions on the parameters
of problem (10.1), see [38]).

The well-posedness result holds if p ≤ m, or under the dissipation condition

lim inf
|s|→∞

−f(s)

s
> −λ1,

where λ1 is the first eigenvalue of the operator −∆ with the Dirichlet boundary
conditions. If p > 3, p > m and f(s) = |s|p−1s, then the local solution “blows
up” at a finite time for the initial conditions with negative energy [38].

For strictly positive damping intensity in the critical case, the dynamical sys-
tem (H1

0 (Ω)× L2(Ω), St) is gradient and possesses a compact global attractor of
finite fractal dimension. The result follows from asymptotic quasi-stability of the
system. The same property allows to get the result on the regularity of elements
of the attractor. It turns out that the result on the existence of a strong (corre-
sponding to the strong topology) attractor does not follow from the smoothness
of attractors except the case of subcritical damping. The first question arising
in this connection is the existence of an attractor for strong solutions, i.e., of
an attractor for solutions with smooth initial data, that asymptotically tend to
the attractor A1, which is strongly included in A. The first step is the proof of
dissipativity of strong solutions which can be inferred from quasi-stability. Using
the dissipativity of strong solutions and interpolation, one can show the existence
of an attractor for strong solutions in a stronger topology [38].



Quasi-Stability Method 485

10.2. Wave equation with boundary damping. We consider wave equa-
tion (10.1) in a bounded domain Ω ⊂ R3 with nonlinear boundary conditions of
Neumann type:

∂

∂n
w + g0(wt) = h(w) in Γ× (0, T ). (10.2)

The functions g and f satisfy the same assumptions as in Subsection 10.1. The
boundary damping has the form g0(s) = g2s+ |s|q−1s, and the boundary source

has the form h(w) ∼ −|w|k−1w, where 1 ≤ k ≤ max
{

3, 4q
q+1

}
(for more details

on the parameters of the problem, see [38]).
The fundamental difference of the boundary and the inner damping is the

essential condition of the linear behavior at infinity. Asymptotic quasi-stability
of dynamical systems generated by problems (10.1), (10.2) was established in
[32,39,44,45].

10.3. Kirchhoff wave models. We consider the problem in a bounded
domain Ω ⊂ Rd with a smooth boundary:

utt − σ(‖∇u‖2)∆ut − φ(‖∇u‖2)∆u+ f(u) = h(x), x ∈ Ω, t > 0, (10.3)

u|∂Ω = 0, u(0) = u0, ut(0) = u1. (10.4)

Here σ, φ ∈ C1(R+) are scalar positive functions, f(u) is a source function, on
which one imposes appropriate growth assumptions depending on the space di-
mension, h ∈ L2(Ω) is a known function (for more details on the parameters of
the problem, see [22]).

This model was introduced by G. Kirchhoff (for the case of d = 1, φ(s) =
φ0 + φ1s, σ(s) ≡ 0, f(u) ≡ 0) and was studied by many authors under various
assumptions on the parameters of the problem (see, e.g., [22,101] and references
therein). Model (10.3), (10.4) is characterized by the presence of three nonlinear
terms: the source, the damping and the rigidity.

Well-posedness of problem (10.3), (10.4) is proved in the space H = [H1
0 (Ω)∩

Lp+1(Ω)] × L2(Ω) with partially strong topology. A sequence {(un0 ;un1 )} ⊂ H is
called partially strongly convergent to (u0;u1) ∈ H if un0 → u0 strongly in H1

0 (Ω),
un0 → u0 weakly in Lp+1(Ω), and un1 → u1 strongly in L2(Ω), when n → ∞ (in
the case of d ≤ 2, 1 < p < ∞ can be chosen arbitrarily). Obviously, partially
strong convergence becomes strong under the supercritical level since H1

0 (Ω) ⊂
Lp+1(Ω).

To describe the asymptotic properties of the corresponding dynamical system,
we introduce the notion of a global partially strong attractor, which is defined as
a bounded set possessing the properties:

(i) A is a closed set in the partially strong topology,

(ii) A is strictly invariant (StA = A for all t > 0),

(iii) A attracts uniformly all bounded sets in the partially strong topology: for
any vicinity (partially strong) O of the set A and any bounded set B in H
there exists t∗ = t∗(O, B) such that StB ⊂ O for all t ≥ t∗.
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The dynamical system (St,H) generated by (10.3), (10.4) possesses a global
partially strong attractor A in the space H. Moreover, A ⊂ H1 = [H2(Ω) ∩
H1

0 (Ω)] × H1
0 (Ω). The attractor A has a finite fractal dimension as a compact

set in [H1+r(Ω) ∩ H1
0 (Ω)] × Hr(Ω) for any r < 1. The proof is based on the

quasi-stability method (for details, see [22]).

11. Plasma dynamics equations

11.1. Quantum Zakharov system. We consider the following system in
a bounded domain Ω ⊂ Rd, d ≤ 3:

ntt −∆
(
n+ |E|2

)
+ h2∆2n+ αnt = f(x), x ∈ Ω, t > 0, (11.1)

iEt + ∆E − h2∆2E + iγE − nE = g(x), x ∈ Ω, t > 0, (11.2)

n|∂Ω = ∆n|∂Ω = 0, E|∂Ω = ∆E|∂Ω = 0. (11.3)

Here E(x, t) is a complex-valued function and n(x, t) is a real-valued function;
h > 0, α ≥ 0 and γ ≥ 0 are parameters, and f(x), g(x) are known functions.

In the dimension d = 1, this system was obtained [76] by means of quantum
fluids approach to model the interaction between the Langmuir quantum waves
and quantum ion acoustic waves in the electron-ion plasma. A 3D version of
equations (11.1)–(11.3) was suggested later in [81].

Problem (11.1)–(11.3) with the Dirichlet boundary conditions is well-posed
in the phase space L2(Ω) × H2 × H2, where H2 = H2(Ω)

⋂
H1

0 (Ω), and H2 is
the complexification of H2 (see [23]). One can show the existence of a finite
dimensional compact global attractor using quasi-stability approach (see [23]).

If h = 0, we obtain the classical Zakharov system [131]. The global attractors
of the system were studied in [71, 77] in the one-dimensional case and in [56], in
the two-dimensional case. In the latter case, the phase space is less smooth and
the corresponding nonlinearity is supercritical, therefore, the Sedenko method is
used in order to prove the uniqueness, and Ball’s method is used to show the
existence of an attractor.

11.2. Schrödinger–Boussinesq equations. The methods, analogous to
those described above, may be used to study the qualitative behavior of the
system consisting of the Schrödinger equation and the Boussinesq equation inter-
acting in a smooth two-dimensional bounded domain Ω ⊂ R2. The system has
the form:

wtt + γ1wt + ∆2w −∆
(
f(w) + |E|2

)
= g1(x),

iEt + ∆E − wE + iγ2E = g2(x), x ∈ Ω, t > 0,

where E(x, t) and w(x, t) are unknown functions, E(x, t) is a complex-valued
function, w(x, t) is a real-valued function. Here γ1 and γ2 are non-negative pa-
rameters, g1(x) and g2(x) are known L2-functions.
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The asymptotic dynamics of the problem was studied in [57] using the meth-
ods described above under the assumptions that

f ∈ C1 (R) , f(0) = 0,

∃c1, c2 ≥ 0 : F (r) =

∫ r

0
f(ξ)dξ ≥ −c1r

2 − c2, |r| ≥ r0,

∃M ≥ 0, p ≥ 1 : |f ′(s)| ≤M(1 + |s|p−1), s ∈ R.

12. Equations with delay depending on the state

12.1. Hyperbolic equations. We study a class of nonlinear second-order
evolution equations with delay depending on the state. The main goal is to
investigate the well-posedness and asymptotic dynamics of equations of the form

utt(t) + kut(t) +Au(t) + F (u(t)) +M(ut) = 0, t > 0, (12.1)

in a Hilbert space H. Here A is a positive linear operator with discrete spectrum,
F (·) is a nonlinear operator, M(ut) describes (nonlinear) delay effects. We use
the conventional for systems with delay (see, e.g., [83, 130]) notation ut(·) for a
function on s ∈ [−h, 0] of the form s 7→ u(t+ s), where 0 < h < +∞ is the delay
time. Details on the assumptions on the nonlinearities can be found in [50].

The main example of this model is the nonlinear plate equation of the form

utt(t, x) + kut(t, x) + ∆2u(t, x) + F (u(t, x)) + au(t− τ [u(t)], x) = 0

in a smooth bounded domain Ω ⊂ R2 with appropriate boundary conditions.
Here τ is a mapping defined on the solutions on an interval [0, h], k and a are
constants. The plate is located on a basement; the term au(t− τ [u(t)], x) models
the effect of the Winkler type basement [123] with the resistance with delay.
Nonlinear forces F may be of Kirchhoff, Berger, or von Karman types.

Equation (12.1) is considered under the initial conditions

u0 = u0(θ) ≡ u(θ) = ϕ(θ), for θ ∈ [−h, 0], ϕ ∈W, (12.2)

where W = C([−h, 0], D(A1/2))
⋂
C1([−h, 0], H) with A denoting the biharmonic

operator with appropriate boundary conditions. For any ϕ ∈ W , there exists a
unique global generalized solution U(t) ≡ (u(t); u̇(t)) to problem (12.1), (12.2)
on the interval [0,+∞).

By using the quasi-stability method (see Section 2.4.3), it was proved that
under certain assumptions on the nonlinearity F , for globally Lipschitz functional
G and locally Lipschitz nonlinearity M : W 7→ H of the form

M(ut) = G(u(t− τ(ut))) ≡ G

(
u(t)−

∫ t

t−τ(ut)
u̇(s) ds

)
,

where τ maps W into the interval [0, h] (for more details, see [50]), the dynamical
system (St,W ) generated by the generalized solutions of (12.1) possesses a finite
dimensional compact global attractor A.
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12.2. Parabolic equations. We study the well-posedness and asymptotic
properties of solutions to the abstract first-order in time evolution equations with
delay of the form

ut(t) +Au(t) +M(ut) + F (u(t)) = g, t > 0, (12.3)

in a Hilbert space H. All notation are analogous to those used in the previous
subsection.

An example of such equations is the following system with discrete delay:

ut(t, x)−∆u(t, x) + b
(
M [u(t− η(ut), ·)](x)

)
+ f(u(t, x)) = g(x)

in a bounded domain Ω ⊂ Rn, where M : L2(Ω)→ L2(Ω) is a bounded operator,
b : R → R is a Lipschitz mapping. The function η : C([−h, 0];L2(Ω)) → [0, h] ⊂
R+ denotes a discrete delay. The Nemytskii operator u 7→ f(u), where f is a
function of class C1 which describes a nonlinear resistance without delay, and
g(x) denotes an external source. The form of the delay term is motivated by
some population dynamics models (see [78] and [116]).

Equation (12.3) is supplemented with the initial conditions

u(θ) = ϕ(θ), θ ∈ [−h, 0]. (12.4)

Under certain assumptions, it is possible to show the well-posedness of problem
(12.3), (12.4) and to use the idea of the quasi-stability method [51] to prove the
existence of a compact global attractor with the properties described in Theorems
2.15, 2.17.

13. Quasi-stability and synchronization

In this section, we discuss the application of quasi-stability method to the
analysis of synchronization phenomena at the level of attractors. This means
that in the synchronization regime an attractor of the interacting system becomes
“diagonal” in some sense. It should be mentioned that the question of synchro-
nization of interacting equations has recently attracted an ample attention. There
are several monographs on this topic [3,100,107,111,125,129], including extensive
literature. The problems of synchronization of infinite dimensional systems were
studied in [9–11, 82, 117] for parabolic systems. Syncronization of Berger plates
(as examples of abstract models considered below) was investigated in [108–110].
Master-slave synchronization of coupled parabolic and hyperbolic equations was
studied in [19,20].

13.1. The main model. The abstract form of the synchronization problem
for second-order systems is stated in the following way. We consider the system
in a Hilbert space H,

utt +Au+D1ut + αK(ut − vt) + κK(u− v) +B1(u) = 0, (13.1)

vtt +Av +D2vt + αK(vt − ut) + κK(v − u) +B2(v) = 0, (13.2)
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where α and κ are non-negative parameters with the initial conditions

u(0) = u0, ut(0) = u1, v(0) = v0, vt(0) = v1. (13.3)

We assume that

(i) A is a self-adjoint positive densely defined operator (with the domain D(A))
in a separable Hilbert space H. The resolvent of A is compact in H.

(ii) The damping operators Di : D(A1/2) 7→ H are non-negative.

(iii) The coupling operator K is strictly positive in H with the domain D(K) ⊇
D(A1/2).

(iv) The nonlinear operators Bi : D(A1/2)→ H are locally Lipschitz.

These hypotheses are mainly motivated by the systems of wave and plate
equations.

Using the notations

U =

(
u
v

)
, A =

(
ν1 0
0 ν2

)
A, B(U) =

(
B1(u)
B2(v)

)
,

one can rewrite problem (13.1)–(13.3) in the form

Utt +AU + (D0 +αK)Ut +κKU +B(U) = 0, U(0) = U0, Ut(0) = U1, (13.4)

where

K =

(
1 −1
−1 1

)
K, D0 =

(
D1 0
0 D2

)
.

Under some additional conditions, problem (13.1)–(13.3) has a unique weak
solution and generates a dynamical system (H, St) in the space

H ≡ H1/2 ×H1/2 ×H ×H, H1/2 = D(A1/2).

Synchronization problem consists of analysis of asymptotic closeness of com-
ponents of solutions u(t) and v(t) in some sense. Moreover, the question on
synchronization at the global attractor level in the limit case α, κ→∞ plays an
important role. This requires uniform estimates for global attractors of problem
(13.1)–(13.3). To study problem (13.4), we split the research into two steps: the
uniform (with respect to α, κ) dissipativity and the uniform asymptotic quasi-
stability.

Under some assumptions on the operators of the system, it is possible to an-
swer these questions for a wide class of models of type (13.1)–(13.3). Restrictions
on the nonlinear feedback forces Bi(u) were introduced earlier for the systems
with nonlinear damping (see [39, p. 98] and [33]) in order to consider a num-
ber of critical nonlinearities. This assumptions are satisfied for Berger’s and von
Karman’s nonlinearities (see [39] p. 156 and p. 160, respectively). Moreover, it
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is shown in [39, p. 137] that the assumption is satisfied for the coupled 3D wave
equations in a bounded domain Ω ⊂ R3,

utt + σ1ut −∆u+ k1(u− v) + ϕ1(u) = f1(x), u|∂Ω = 0, (13.5)

vtt + σ2vt −∆v + k2(u− v) + ϕ2(u) = f2(x), v|∂Ω = 0, (13.6)

if ϕi ∈ C2(R) satisfy |ϕ′′i (s)| ≤ C(1 + |s|) for all s ∈ R. The parameters σi and
ki are non-negative. Consequently, the abstract model covers 3D wave dynamics
with critical nonlinear terms.

To study the synchronization phenomena, it is important to obtain the uni-
form with respect to the parameters α, κ quasi-stability estimates. Under certain
assumptions, it is possible to prove the following statement (see [28]).

Proposition 13.1 (Uniform quasi-stability). Let M⊂ H be a bounded pos-
itively invariant set with respect to St, and Y i = (U i(t), U it (t)) = StY

i
0 , i = 1, 2,

be two solutions to (13.4) with different initial data Y i
0 ∈ M. Then there exist

C, γ > 0 such that

EZ(t) ≤ CEZ(0)e−γt + Cmax
[0,t]
‖AσZ(τ)‖2, ∀t > 0,

where 0 ≤ σ < 1/2, Z = U1 − U2, and

EZ(t) =
1

2

(
‖Z(t)‖2 + ‖A1/2Z(t)‖2 + κ‖K1/2Z‖2

)
.

If M is bounded in H uniformly with respect to (α;κ) ∈ Λ and

(α;κ) ∈ Λβ ≡ {(α;κ) ∈ Λ : α ≤ β(1 + κ)}

for some β > 0, then the constants C, γ do not depend on (α;κ), though they
may depend on β.

13.2. Asymptotic synchronization. The study of asymptotic synchro-
nization phenomena includes investigation of qualitative behavior of systems in
the case of large coupling parameters κ → ∞ (and/or α → ∞). It follows from
the uniform estimates for the attractor that u = v in this limit case. Therefore,
it is natural to consider the limit problem of the form

wtt +Aw +Dwt +B(w) = 0, w(0) = w0, wt(0) = w1, (13.7)

where

D =
1

2
(D1 +D2), B(w) =

1

2
(B1(w) +B2(w)).

It can be shown that problem (13.7) possesses a compact global attractor A
in the space H1/2 ×H, and in the limit case κ →∞ we have

lim
κ→∞

[
sup

{
distHε(Y, Ã) : Y ∈ Aα,κ

}]
= 0, (13.8)
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where Hε = [H1/2−ε]4 and Ã =
{

(u0;u0;u1;u1) : (u0;u1) ∈ A
}

. Here A is a
global attractor of the dynamical system generated by (13.7) and Aα,κ is a global
attractor of the dynamical system generated by (13.1). Moreover, if the operator
K commutes (one can choose K = Aσ for some 0 ≤ σ ≤ 1/2) with A, then
convergence (13.8) takes place in the space H1/2×H1/2×H1/2−ε×H1/2−ε ⊂ H.

Result (13.8) means that the attractor Aα,κ becomes “diagonal” for large
intensity κ with a fixed or even absent interaction between the speed components.
Therefore, the components of the system synchronize in the limit case at the level
of attractors. In particular, this means that any solution U(t) = (u(t); v(t)) to
equation (13.1)–(13.3) shows the following synchronization:

∀ ε > 0 ∃κ∗ ∀κ ≥ κ∗ lim sup
t→+∞

[
‖ut(t)− vt(t)‖2 + ‖A1/2(u(t)− v(t))‖2

]
≤ ε.

Let us note that there is a problem in proving synchronization for small fixed κ
and large α. The point is that in the case of κ = 0, under certain conditions on
nonlinear forces Bi, the existence of two stationary solutions is possible, which
demonstrates the absence of asymptotic synchronization.

In the case of identical interacting subsystems, i.e., if D1 = D2 ≡ D, B1(w) =
B2(w) ≡ B(w), the asymptotic synchronization is observed for finite κ. Namely,
if the parameter

sκ = inf
{
ν(Aw,w) + κ(Kw,w) : w ∈ H1/2, ‖w‖ = 1

}
is large enough (it can be shown that sκ ≥ κ inf spec(K), i.e., ifK is non-singular,
sκ → +∞ if κ → +∞), then the property of exponential synchronization holds.
This means that there exists κ0 > 0 such that for any κ > κ0 there exists ω > 0
such that

lim
t→∞

{
eωt
[
‖ut(t)− vt(t)‖2 + ‖A1/2(u(t)− v(t))‖2

]}
= 0

for any solution U(t) = (u(t); v(t)) to problem (13.1)–(13.3). In this case, Aα,κ ≡
Ã for all κ such that sκ ≥ s∗.

Similar results can be established for N interacting second-order in time equa-
tions

u1
tt +Au1 +D1u

1
t + αK(u1

t − u2
t ) + κK(u1 − u2) +B1(u1) = 0,

ujtt +Auj +Diu
j
t − αK(uj+1

t − 2ujt + uj−1
t )

− κK(uj+1 − 2uj + uj−1) +Bj(u
j) = 0,

. . .

uNtt +AuN +DNu
N
t + αK(uNt − uN−1

t ) + κK(uN − uN−1) +BN (uN ) = 0.

Let us note that in the case of ODEs (νi ≡ 0, K = id) synchronization for
this model was studied in [82] under the assumption that both parameters α and
κ become large and even tend to infinity. Our approach allows us to establish
asymptotic synchronization for fixed α and κ → +∞ (for coincident systems,
it is sufficient to assume that κ is large enough). A similar result was obtained
in [109] for the plates with Berger’s nonlinearity in the case of D0j = dj id, α =
0 and K = id.
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13.3. Applications. Finally, we briefly describe the applications of general
results stated above.

13.3.1. Plates. We consider the plate equations coupled by elastic coupling,
namely, the system:

utt + γ1ut + ∆2u+ κK(u− v) + ϕ1(u) = f1 in Ω ⊂ R2,

vtt + γ2vt + ∆2v + κK(v − u) + ϕ2(u) = f2 in Ω ⊂ R2,

with the hinged boundary conditions

u = ∆u = 0, v = ∆v = 0 on ∂Ω.

The nonlinear term ϕi(u) may describe Kirchhoff’s, von Karman’s, or Berger’s
models (see Section 5).

The coupling operator K may have the form: K = id, K = −∆, and K =
Aσ with 0 < σ < 1/2. In the case of the Kirchhoff plate with globally Lipschitz
functions ϕi, one can show that two plates can be synchronized by means of
finite number of point couplings. Let us note that in the case when both ϕ1 and
ϕ2 are Berger’s nonlinearities (possibly with different parameters) the results on
synchronization with the coupling operator K = id can be found in [108], see
also [109,110].

The abstract results stated above can be also applied to other plate models
(see [20,28]).

13.3.2. Coupled wave equations. For coupled wave equations (13.5),
(13.6), the standard (critical) hypothesis on the nonlinear source ϕ ∈ C2(R) in
the 3D case is as follows:

lim inf
|s|→∞

{
ϕi(s)s

−1
}
> −λ1, |ϕ′′i (s)| ≤ C(1 + |s|), s ∈ R,

where λ1 is the first eigenvalue of the Laplace operator with the Dirichlet bound-
ary conditions, see, e.g., [39, Chapter 5].

One can also consider various forms of dissipative sine-Gordon equations.
They are used to model dynamics of the superconductive Josephson tunneling
controlled by a current source (see, e.g., [126]). For example, one can consider
the system

utt + γut −∆u+ βu+ κ(u− v) + λ sinu = f(x),

vtt + γvt −∆v + βu+ κ(v − u) + λ sin v = f(x)

in a smooth domain Ω ⊂ Rd with the Neumann boundary conditions

∂u

∂n

∣∣∣∣
∂Ω

= 0,
∂v

∂n

∣∣∣∣
∂Ω

= 0.
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It is easy to see that in the case of the Dirichlet boundary conditions one can
apply the above mentioned theory. The same is true for β > 0. In the case of
β = 0, the situation is more complicated (see [28]).

Another interesting system of the coupled sine-Gordon equations is as follows:

utt + γut −∆u+ λ sin(u− v) = f1(x), (13.9)

vtt + γvt −∆v + λ sin(v − u) = f2(x), (13.10)

u|∂Ω = 0, v|∂Ω = 0. (13.11)

Formally, this model is out of the scope of the developed theory. However, using
the ideas introduced above, it is possible to answer some questions about syn-
chronization regimes of the system. For ODEs, the synchronization phenomena
for (13.9)–(13.11) were studied in [99, 100]. For this system, the shifted in some
sense synchronization in the antiphase is observed. For details, we refer to [28].

Supports. The last two authors were partially supported by the Volkswagen
Foundation grant within the frameworks of the international project “Modeling,
Analysis, and Approximation Theory toward Applications in Tomography and
Inverse Problems”.
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Метод квазiстiйкостi в дослiдженнi асимптотичного
поводження динамiчних систем

Igor Chueshov, Tamara Fastovska, and Iryna Ryzhkova

В оглядi здiйснено спробу представити сучаснi iдеї та методи до-
слiдження якiсної динамiки нескiнченновимiрних дисипативних систем.
Представлено такi основнi поняття, як дисипативнiсть та асимптотична
гладкiсть динамiчних систем, глобальний та фрактальний атрактори,
визначальнi функцiонали, регулярнiсть асимптотичної динамiки. Ак-
цент зроблено на методi квазiстiйкостi, розробленому I. Чуєшовим та
I. Лашецькою. Цей метод базується на вiдповiдному розкладi рiзницi
траєкторiй на стiйку та компактну частини. Iснування такого розкладу
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має багато важливих наслiдкiв: асимптотичну гладкiсть, iснування та
скiнченновимiрнiсть атракторiв, iснування скiнченної множини визна-
чальних функцiоналiв та iснування (за деяких додаткових умов) фрак-
тального експоненцiального атрактора. Решта статтi iлюструє застосу-
вання абстрактної теорiї до конкретних проблем. Основну увагу придi-
лено демонстрацiї областi застосування методу квазiстiйкостi.

Ключовi слова: нескiнченновимiрнi динамiчнi системи, асимптотичне
поводження, глобальнi атрактори, фрактальнi експоненцiальнi атракто-
ри, детермiнуючи функцiонали, фiнiтний фрактальний вимiр, квазiстiй-
кiсть, стiйкiсть, диференцiальнi рiвняння з частинними похiдними.
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