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On the Sharpness of One Integral Inequality
for Closed Curves in R*

Vasyl Gorkavyy and Raisa Posylaieva

The sharpness of the integral inequality f7 k3 + k3 4+ k3ds > 2m for

closed curves with nowhere vanishing curvatures in R* is discussed. We
prove that an arbitrary closed curve of constant positive curvatures in R*
satisfies the inequality [ \/kf + k3 + k3 ds > 2V/5m.
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1. Introduction

The famous Fenchel-Borsuk theorem of the classical theory of curves states
that the total curvature of an arbitrary smooth closed curve v in R” is greater
than or equal to 2m:

/k:l ds > 2, (1.1)
g

and the equality holds if and only if v is a convex closed curve in R2, see [I,
Chap. 21], [4,5].

In [6], the first author obtained a series of integral inequalities for curvatures
of smooth closed curves in R which may be viewed as a direct generalization of
the Fenchel-Borsuk inequality. Namely, let v be an arbitrary smooth closed curve
in R", n > 4. Suppose that v has nowhere vanishing curvatures k1, ko, ..., k; for
some 2 < j < mn — 1. Then the following inequality holds:

/ VL R K ds > 2, (1.2)
i

where s stands for an arc-length of v and k,, is taken to be identically zero.

Consequently, if all the curvatures k1, ..., k,_1 of v C R™ are nowhere vanish-
ing, then (1.2) holds true for each 2 < j <n — 1, and thus v satisfies a sequence
of n — 2 different integral inequalities.

(© Vasyl Gorkavyy and Raisa Posylaieva, 2019


https://doi.org/10.15407/mag15.04.502

On the Sharpness of One Integral Inequality 503

Inequality (1.2) is sharp in the case of an odd j, see [6]. Actually, for any
fixed odd 2 < 7 < n — 1 one can construct a sequence of smooth closed curves
{¥m}roy in R™ such that the values of

/ \/kf,l +kF k7, ds

tend to 2w as m — oco. If n is even, then the desired sequence {7} o _, may
consist of closed curves of constant curvatures in R"; if n is odd, then {vm} -_;
in R™ may be obtained by slight perturbations of curves of constant curvatures in
R"~! C R™. Thus, curves of constant curvatures provide the sharpness for (1.2)
in the case of an odd j.

As for the case of an even j, the problem of the sharpness of (1.2) still remains
quite challenging and interesting open problem, which motivated this research
paper.

We start to discuss the problem by considering the simplest case n = 4. As
stated above, an arbitrary smooth closed curve v C R? satisfies two inequalities:

/,/k;% + k3 4+ k3ds >2m, if k1 >0, ky > 0, (1.3)

Y

/ \/k‘% + k:%ds > 2, if k1 >0, ko > 0, ks > 0. (1.4)
Y

Inequality (1.4) is sharp since it corresponds to the odd value j = 3.

As for inequality (1.3), it looks rather trivial in view of (1.1), and hence one
can expect that (1.3) is not sharp. The main result of the paper partially confirms
this expectation.

Theorem 1.1. Let v be a smooth closed curve in R* with nowhere vanishing
constant curvatures ki, ko, and k3. Then the following sharp lower bound holds:

/ \/ k3 + k3 + k3ds > 2V/5m. (1.5)
7

Moreover, the equality in (1.5) is attained if and only if y is represented in R*
as ' = a'cost, x? = a'sint, 2® = a®cos2t, x* = a®sin2t, t € [0, 27, where a'

and a® are arbitrary non-zero constants.

A computer-aided numerical analysis demonstrates that (1.5) holds true for
some closed curves with nonconstant curvatures too. This, together with Theo-
rem 1.1, allows us to think that inequality (1.5) remains true for any closed curve
with nowhere vanishing curvatures in R*.

Let us recall the idea of the proof of inequality (1.3). For an arbitrary smooth
curve v C R* with nowhere vanishing curvatures k; and ko, one can consider a
well-defined family of two-dimensional osculating planes of +, which are spanned
by the first and second vectors of the Frenet frame of . This family of planes may
be interpreted as a smooth closed curve in the Grassmann manifold Ggg4; it is
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called the osculating indicatrix of v and denoted by 4. The Grassmann manifold
Go,4 can be embedded into R® via the Pliicker embedding, see [2, Chap. 8.2], [3],
and therefore 4 can be viewed as a smooth closed curve in RS. It turns out that
the left-hand side of (1.3) is the total curvature of 4, and thus inequality (1.3)
for « is just the Fenchel-Borsuk inequality for 7, c.f., [6].

If 4 has constant curvatures, then the the following stronger result holds.

Theorem 1.2. Let y be a smooth closed curve in R* with nowhere vanishing
constant curvatures ki, kg and k3. Let 7 C RS be the osculating indicatriz of .
Then the following holds:

1) 4 is a smooth closed curve;
2) 7 lies in a four-dimensional affine subspace R* C RY;

3) the curvatures ]~€1, INfQ and 153 of 4 are non-zero constants;

4) /%1d§:/w/k3+k§+k§ds;
¥ v

5) /\/l%%+l;§+§:§d§:\@/\/k%+k%+k:§ds, where § is an arc-length of 7.
¥ v

We were very surprised by the relationship 5) which looks quite elegant al-
though individual expressions for Iij in terms of k; are rather cumbersome.

In view of Theorem 1.2, the procedure of constructing the osculating indicatrix
described above can be viewed as a particular transformation of closed curves of
constant curvatures in R*. The transformation can be iterated, and then at every
step we obtain a new curve of constant curvatures in R*. This results in a specific
sequence of curves of constant curvatures in R* which is generated by the initial
curve « of constant curvature. Notice that the value of

/M%+%+@@
Y

is multiplied by /2 at each step of iteration.
It would be interesting to extend Theorem 1.1 and Theorem 1.2 to more
general families of closed curves with nonconstant curvatures in R

2. Closed curves of constant curvatures in R*

Let v be a smooth curve in R?*, whose curvatures ki, ks, k3 are non-zero
constant. Then  is parameterized as follows:

x1 =ajcosait, w3 =apsinait, x3=agcosagt, x4 =agscosast, (2.1)

where aj, a2, a1 and ag are constants, see [1, Chap. 33].
For an arc-length s of ~y, one has

ds
i \/a2a? + a3a3. (2.2)
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Hence one needs to assume afa? + a3a3 # 0 to guarantee the smoothness of 7.

For calculating the curvatures of «y, one can apply standard formulae of the
classical theory of curves, see [1, Chap. 32]. Elementary differential-geometric
calculations result in the following statement.

Proposition 2.1. The curvatures of v are expressed as follows:

by a%a%—ﬁ—a%a% (2 3)
1= 723 2 2 :
ajoy + a50;5
ko — arazaias|a?d — o3 (2.4)
2T (a2a2 + a2a2)\/a2o? + aZa¥’ '
109 2045 199 20
1o
g = ———102 (2.5)

\/a%o/ll + a%a4

Therefore, in order to guarantee the smoothness of v and the nowhere van-

ishing of its curvatures, one needs to assume that no one of the four constants

a1, as, aq, ag is zero and, moreover, af # a%. If some of these constants are

negative, then one can apply a symmetry transformation in R* to make them

positive. Thus, from now on we will assume that a1, as, a7, as are positive and
2 2
of # aj.

Clearly, the curve 7 represented by (2.1) lies on the Clifford torus 7% c R*

. . . . 2 2 _ 2 2 2 _ 2 . .
given implicitly by z{ + 25 = af, 25 + 27 = a5. The curve is closed if and only
if &L € Q, ie.,, & = ™ where my and msg are coprime integers. The minimal
a2 a2 m2

period T for the parameter t is expressed by the obvious formulae

2 2
= ST 2T (2.6)
631 Qa2

Our aim is to analyze the value of fw VK% + k3 + k3ds. Applying (2.2)-(2.5)
and taking into account (2.6), one gets the following.

Proposition 2.2. We have

k2 + k3 + k2ds = 27 \/m? + m2. (2.7)
[ /

We would like to emphasize that the arc-length and the curvatures of v depend
on all the constants a1, as, a1, as. However, the value of

/Mﬁ+@+@@
;

depends only on the coprime integers m; and mso. Consequently, the range of
possible values of the integral in question is countable.

The minimal possible value is equal to 2¢/57, and it is achieved if either m; =
1, mg =2 or my = 2, mg = 1. The cases of (m1, mg) being equal to (0,0), (1,0),
(0,1), (1,1), which give to \/m7 4+ m3 values less than /5, are prohibited because
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a1 and ao are assumed to be positive and different. This completes the proof of
Theorem 1.1.

Notice that v represents the class (mq,ms) in the fundamental group of the
torus T2. Therefore, in the general case of curves with nonconstant curvatures,
one may conjecture that the values of

/J@+@+@@
Y

have to obey some topological (homotopical) restrictions.

3. Osculating indicatrices of closed curves of constant curva-
tures in R*

Now let us construct the osculating indicatrix of the curve =, c.f., [6]. By
definition, the osculating plane of v at an arbitrary point p €  is spanned and
oriented by the first two vectors of the Frenet fame of v at p. Equivalently, the
same plane is spanned and oriented by the vectors %(1&)7 %(f), where x = x(t)
is the position-vector of p € 7. Being translated to the origin O € R?, this
osculating plane represents a point in the Grassmann manifolds G(2,4). (For
definitions and geometric properties of G(2,4), see [2, Chap. 8], [3].) By moving
p along -, one obtains the one-dimensional family of osculating planes of v, which
generates a curve 7 in G(2,4). This curve is called the osculating indicatrix of ~.

The Grassmann manifold G(2,4) can be isometrically embedded into R® via
the Pliicker coordinates, see [2, Chap. 8.2], [3]. Consequently, ¥ C G(2,4) can
be viewed as a curve in RS. If z = z(¢) is the position-vector of «, then 7 is
represented in RS by the position-vector

5.5
dt’ d
= L (3.1)
dz &’z |’
dt > dt?
where the brackets [-,:] denote the exterior product of vectors. More precisely,
one has
dr d’x T
I:dt7 dtQ} = (T12, 713, T14, T23, T24, T34) (3.2)
where

d:lii d233j dSUj d2l‘i
By= o TIT T <<, :
YT A T e de? v<d (3:3)

Recall that the position-vector x(t) of v is given by (2.1). By substituting (2.1)
into (3.1)—(3.3), we can easily derive the position-vector Z(t) of the osculating
indicatrix 7 in RS:

2.3
. <a1a1 —a1a2001 09

o 3 (1 cos apt sin gt — g sin a t cos at) ,
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—a1a20010 . .

— (a1 cos aqt cos agt + aig sin avpt sin at)

a1a2001 02 . .

— (a1 sin ot sin aat + ag cos ait cos aot) ,

a1ag10 . . —CL%OJ%

— (cv1 sin agt cos aiat — ag cos gt sin aat) 3 , (3.4)

where A = y/afaf + a3a3/alat + a3as.
Clearly, the curve 7 lies in the four-dimensional affine subspace R* C RS given

2.3 2.3
: 512 4197 =34 _ —A3%y
by the equations 7~ = ==, 7°% = —-2.

By using standard formulae of the classical theory of curves, see~[1, Chap. 32],
the following expressions for the arc length § and the curvatures kq, ko, k3 of ¥
can be found from (3.4).

Proposition 3.1. 1. The arc length § of 7 is expressed as follows:

ds 1 a1ags10
— == 3.5
dt  X\|a? — a2 (8:5)

2. The curvatures ki, ko, ks of 7 are expressed as follows:

~ 2 2
= A VAt (3.6)

arazonaslad — aj|’
~ 2

=\
2 2 2 2’
arazlay — azlv/aj + o3
1
ks =\ > -
a1a20i1 a2/ ay + a5

Consequently, the curvatures l::l, ];2, ks of 7 are constant. Moreover, by
applying (3.5)—(3.8), one can easily verify that 4), 5) of Theorem 1.2 hold true,
and this completes the proof of this theorem.

Notice that if ay = g, then v represented by (2.1) is a circle, and thus its

(3.7)

(3.8)

first curvature is k1 = 21+ =, the second curvature is zero, ko = 0, and the
ajTay

third curvature k3 is undefined. In this case, the osculating plane of v at every
point is the two-dimensional plane containing . Hence the osculating indicatrix
4 degenerates to a point in G(2,4).

4. Concluding remarks and questions

Remark 4.1. Theorem 1.1 can be extended to the case of closed curves of
constant curvatures in R?>", n > 2. Moreover, for closed curves with non-zero
constant curvatures in R?” one can consider the integrals

/\/kgm_l—i-k%m%—k%mﬂds, 1<m<n-1
-

It turns out that these integrals satisfy the same sharp inequality (1.5), although
the proof is technically more complicated.
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Remark 4.2. Let v be an arbitrary smooth curve with nowhere vanishing
curvatures ki, ko in R%. Then its osculating indicatrix ¥ is a smooth curve in the
Grassmann manifold G(2,4). By considering the Pliicker coordinates, G(2,4) is
embedded into the unit sphere S° C RS, see [2, Chap. 8.2], [3]. It turns out that
the osculating indicatrix 7 is an asymptotic curve of G(2,4) C S° with nowhere
vanishing geodesic curvature. The integral

/Mﬁ+@+@@
v

is equal to the total curvature
/%ﬁ
:Y

of 4, when 7 is viewed as a curve in RS. Hence, the sharpness problem for

/Mﬁ+@+@@
i

gives rise to the problem on finding the sharp lower bound for

/h%
0l

where 7 is a closed asymptotic curve with nowhere vanishing geodesic curvature
in G(2,4) C S°.

Remark 4.3. From a local point of view, a smooth curve ¥ C G(2,4) is the
osculating indicatrix of a smooth curve v C R* if and only if 4 is an asymptotic
curve with nowhere vanishing geodesic curvature in G(2,4) C S°, c.f. [7]. We are
interested in a global version of this statement. Exactly, what the necessary and
sufficient conditions should be imposed for a closed smooth curve in G(2,4) to
be the osculating indicatrix of a smooth closed curve in R*.
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IIpo TouHicTh oaHi€ET iHTErpaIbHOI HEPIBHOCTI JIJIst
3aMKHYTHX KpusBux B R*
Vasyl Gorkavyy and Raisa Posylaieva

Jl1l 3AMKHYTHX KPHBHX 3 HeHyJIboBMME KpusuHamu B R* mocimxyernes
. . .. . . 2 2 2
ONTUMAJIHLHICTD iIHTErPaJILHOT HEPiBHOCTI f,y ki + k5 + k3 ds > 2m. losene-
HO, IO JIOBiIbHA 3aMKHYTa KPUBA 31 CTAJIMMH JOJATHEME KpubHHamu B R*
sajoponbuse nepismicrs [ \/k{ + k3 + k3 ds > 2V/57.
Kirouosi csioBa: 3aMKHyTa KpUBa, KpUBUHA, KPHUBI 31 CTATNMHM KPUBU-
HAMU.
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