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On the Number of Zeros of Functions in
Analytic Quasianalytic Classes

Sasha Sodin

A space of analytic functions in the unit disc with uniformly continuous
derivatives is said to be quasianalytic if the boundary value of a non-zero
function from the class can not have a zero of infinite multiplicity. Such
classes were described in the 1950-s and 1960-s by Carleson, Rodrigues-
Salinas and Korenblum. A non-zero function from a quasianalytic space
of analytic functions can only have a finite number of zeros in the closed
disc. Recently, Borichev, Frank, and Volberg proved an explicit estimate on
the number of zeros for the case of quasianalytic Gevrey classes. Here, an
estimate of similar form for general analytic quasianalytic classes is proved
using a reduction to the classical quasianalyticity problem.
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1. Introduction

Analytic quasianalyticity. Let W = (w,)32, be a weight such that

1 1
wy € [1,400], Y —=1, =0(n™>). (1.1)
n=0 Wn Wn

Consider the following space 2l of analytic functions in the unit disc D = {|z] <

1}
Ay = {f(z) =" a2 | |Ifllw & sup |an|w, < oo} . (1.2)
n=0 n

For each k, the k-th derivative f(*) of a function f € 2y is uniformly continuous

in D, and hence admits boundary values

FE () = lim f¥)(2)
z—et?
z€eD

on OD.
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The class 21y is said to be quasianalytic if a non-zero function f € 2y can
not vanish with all derivatives at a point:

VE>0 fF(e)=0 = f=0, ie,Vn>0a,=0. (1.3)

A result proved by Carleson [5], Rodrigues-Salinas [14] and Korenblum [8] (which
we state explicitly in Remark 1.5 at the end of this introduction) implies that the
condition

oo o
My nk/?
=00, where My = E , 1.4
o Mk n=0 n )

is sufficient for quasianalyticity. If the weights are sufficiently regular, e.g.,
Wp—1 < wy, and wa, < \Jwpwy, for n > 1, condition (1.4) is also necessary for
(1.3). For such regular weights, the condition (1.4) is equivalent to the divergence

log wy,

g —— =00. (1.5)
3/2

Syl /

For example, the Gevrey weights
W) = (w,(f’a))nzo , wgf"“) = exp(an® + ¢(a,a)) , (1.6)

where ¢(a,a) = log) ", ~exp(—an®) is determined by the normalisation (1.1),
define a quasianalytic class if and only if & > 1/2. In general, the condition
(1.4) is not necessary for quasianalyticity, as for the latter it is sufficient for the
measure » o~ oW, 1§, to be Stieltjes-determinate, and this condition is strictly
weaker than (1.4).

More recently, the problem of analytic quasianalyticity (for the classes D D
Ay as in Remark 1.5 below) was studied by Borichev [3], who obtained a new
proof of quasianalyticity in the quasianalytic case (1.4) as well as a bound on the
growth of f near a zero of infinite multiplicity in the case when (1.4) fails.

Zeros in the closed disc, and an application in spectral theory. If
the space 20y is quasianalytic, a non-zero function f € 2y has a finite number of
zeros in D, counting multiplicity. Indeed, if f has an infinite number of zeros, these
have an accumulation point €% € 9D, and then f vanishes with all derivatives
at e,

This fact was exploited by Pavlov [11,12] to show that a non-selfadjoint
Schrodinger operator Hy = —y” + g(x)y with a continuous complex potential
q : Ry — C, defined on the semiaxis [0, c0) with the boundary condition y(0) —
hy'(0) = 0, has a finite number of eigenvalues, counting multiplicity, if

by = / q(x) ]2z dz < oo for k>0
0

b
(531 + by )t*

and /Ologiréf Tdt =—o0. (L.7)
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For example, the condition |¢(z)| < Cexp(—cz®) implies (1.7) if and only if o >
3. For oo < § Pavlov constructed a potential such |g(z)| < Cexp(—cz®) but H
has infinitely many eigenvalues.

Recently, Bairamov, Cakar and Krall [1] and Golinskii and Egorova [7] ob-
tained counterparts of Pavlov’s results for non-selfadjoint Jacobi matrices. Con-
sider the operator J acting on f2(Z4 ) via

(Jy)(n) = any(n+ 1) + bpy(n) + Ip>icp—1y(n —1), n>0. (1.8)

It follows from the results of [7] that if

(o.9) o
Zmlzl/k =00, where my = Z (|bn] + |ancn — 1) n*/? (1.9)
k=1 n=0

then J has a finite number of eigenvalues, counting multiplicity. The condition
(1.9) holds, for example, when

|bn| + |ancn, — 1] < Cexp(—cen®) (1.10)

with @ > 1/2, whereas for av < 1/2 there exists [7] an operator (1.8) satisfying
(1.10) with infinitely many eigenvalues.

Estimates on the number of zeros. Denote by ny the number of zeros
of f in D, counting multiplicity, and let

Nw (A) =sup {ns | |f € Aw, |fO)] >efllw}, A>o0. (1.11)

A compactness argument shows that Ny (A) is finite for any A < oco. However, it
is also of interest to obtain explicit bound on Ny, and in particular to investigate
the asymptotic behaviour as A — +oo. Using the method of Pavlov [11,12], such
bounds can be translated into explicit bounds on the number of eigenvalues of
the Schrodinger operator H as well as of its Jacobi counterpart J.

In view of these applications, Borichev, Frank and Volberg [4] proved an
explicit bound on Ny (A) for the Gevrey weights (1.6). Their results imply that

Za—1 11
Nyt < Cla,a)Az-1, ac (12, 5 +¢ 7 (1.12)
Ci(a) exp(C'g(a)\/Z), a=;

with explicit C, Cy, Co, along with improved bounds for small values of A. The
argument of [4] is based on the method of pseudoanalytic extension introduced
by Dyn’kin [6] and applied to analytic quasianalyticity by Borichev in [3].

Here we employ a reduction to the classical (Hadamard) quasianalyticity prob-
lem to prove

Proposition 1.1. Let W be a weight as in (1.1) satisfying the condition
(1.4), and let

h) = S p > H(p) =3 h(k); (1.13)
p k=1
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h™l(e) =min{p>1|h(p) <€}, H'(R)=min{p>0|H(p) > R}. (1.14)

Then the quantity Ny (A) from (1.11) satisfies
1 —2
Nw (A) < 300h (2 max(p(A), h—l())> : (1.15)

where p(A) = H-Y(H([A + 3]) + 25V A).

Remark 1.2. In our normalisation (1.1), Ny (A) = 0 for A < log2 as a
consequence of the Rouché theorem, hence (1.15) is meaningful for A > log 2.

Remark 1.3. In the Gevrey case (1.6),

1—5n L ~n<1
hip) =<p 2=, H(p)={' 2=
logp, p

hence the bound (1.15) implies that

C'(a, a) A%a=T, ae

) 1.16
Ci(a) exp(Ch(a)VA), a= 3 (1.16)

Nw(a,a) (A) S {

which is similar to (1.12), albeit with an inferior exponent for a > 1.

Remark 1.4. The estimate (1.15) remains valid in the non-quasianalytic sit-
uation, provided that A is sufficiently small for the right-hand side to be finite,
ie.,

> h(k)>25VA. (1.17)

k>[A+3]

Note that the condition (1.17) may hold for large A (particularly, for A > log 2)
if the series > Mj_1/Mj, converges slowly enough.

Remark 1.5. Proposition 1.1 also yields bound on the number of zeros of a
function in the Carleson—Salinas—Korenblum class
F 0 (2)] }

oo
def
Dy = fz:g anz" | |fl®,, = sup sup ——%+ < 0
{() n ||| ” M i |z|<1 M2k:

n=0

associated with a positive sequence M = (Mg)gr>0. We sketch the (well-
known) reduction: first, one may assume without loss of generality that Mj <
v/ My_1My41. The theorem of Carleson—Salinas—Korenblum asserts that in this
case D) is quasianalytic if and only if

> My _ (1.18)

M,
k>0

Construct the weight W (M) = (wy,)n>0, where

Wy, _ . mm—1)---(m—k+1)
=, Wy, = max
ZS;;:() Wip ’ " 0<k<m Moy,

Wp =
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so that ® s C Ay (ar). One can check that if (1.18) holds, then also

nk/2

M' = (MY)ks0, M}=Y

w
n>0 "

satisfies Yo M| /M} = co. Therefore Proposition 1.1 applied to W (M) yields
an estimate on

No, (A) =sup{ns | f € D, |£(0)] = e | fllon}, A>0, (1.19)

for an arbitrary quasianalytic ;.

2. Proof of Proposition 1.1

The proof is based on the following construction, similar to the one using
which the determinacy criteria for the moment problem in the Stieltjes case are
derived from those in the Hamburger case (see [15] for a further application of a
similar construction). To every

oo
f(z)= Zanzn e Aw
n=0
we associate a function

¢p(x) = ancos(vnx), xz€ER.
n=0

We have: .
k
6P @) < 3 lan|n®/? < || lw Ms,
n=0
i.e., ¢y lies in the space
(k)
) def 00
Q= {6 € C®) | [¢llay & sup 12N o o
k M,

defined by the sequence M = (My)g>o of (1.4). According to the Denjoy—
Carleman theorem in the form of Mandelbrojt (see [2] or [10], and also the com-
ment following Lemma 2.3 below), the condition > 72, My_1 /M) = oo implies
that the class Qj is quasianalytic. [In our case, the sequence M is logarithmically
convex, i.e. My < \/Mj1Mj_q for k > 1, hence the condition > 72 | My_1 /M =
oo is necessary and sufficient for the quasianalyticity of Qps.] This implies the
sufficiency part of the Carleson-Salinas—Korenblum condition (1.4) for the quasi-
analyticity of 2y : indeed, if f vanishes with all derivatives at 1, then ¢; vanishes
with all derivatives at 0, and hence ¢y and f are identically zero.

To prove Proposition 1.1, we make these considerations quantitative. The
argument rests on two lemmas. The first one asserts that ¢, and its first few
derivatives are small at 0 if f has many zeros near 1.
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Lemma 2.1. Let € € (0,1), and let m be the number of zeros of f € Ay in
the domain {|z| < 1,|z — 1| < €}, counted with multiplicity. Then

m—k
(2k) < dee cb<min (M M
|77 (0)] < <m > Monl| fllw, 0<k < min 5\ 5 )

The second lemma guarantees that there is a point not too far from 0 at which
¢y is not too small. The current version, with the sharp power of A, was kindly
communicated by F. Nazarov.

Lemma 2.2. Let ¢(z) = 300 a, cos(y/nz) be such that |ag| > e™4 and
S |an| < 1. Then there exists x € [0,9v/A] such that |¢(x)] > e~ 473,

To derive the proposition from the two lemmas, we use a propagation of
smallness argument due to Bang [2], which we state as

Lemma 2.3. Let M = (My)r>0 be a sequence of positive numbers such that
My < \/Mg_1Myyq1 for k > 1. For ¢ € Qypy, define a nested sequence of sets

R = By(¢) D Bi(¢) D Ba(¢) D - -+ via
By(9) = {z e R0 <k < p 6 (@)] < "M | -

Then for0 < g <p

p
dist(B,(6), R\ By(0)) = ~(H(p) ~ Hlg) = > T2
k=q+1

(As pointed out in [2], this lemma readily implies the Denjoy—Carleman the-
orem mentioned above.) The proofs of the lemmas are postponed to the next
section, and we now proceed to

Proof of Proposition 1.1. Without loss of generality we may assume that
[ fllw =1, so that ||¢y[lq,, < 1. Denote by ns(S) the number of zeros of f in
S C D, counting multiplicity. By Jensen’s formula

—A=log|f(0)]= > 10g|21+/2ﬂlog‘f (67;9)’%
Flo=0 "

<) L;j<1-¢ log 7|
f(2)=0

<tog (1- ) nr ({1 <1-5}).

nfﬁgA—an <{]z]21—%}> <

hence

A=

(2A + 8m,), (2.1)

<),

where

Me = Supny <{]z] <1, ‘z — e
0
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Without loss of generality the supremum in the definition of m. is achieved when
0 =0.
Let p(A) = H™! (H([A +3]) + 25\/2), and let

1 1 mM?2
- A = _— _“2m-l
m m“@*” @mﬂ)’gzw M3,

m Mgm Mm 1
\[—=V2 > = > p(A).
2¢ \/>6M2m_1 - Mm_1 h(m) - p( )

Let us show that me < m. Assume the contrary. Observe that

therefore Lemma 2.1 yields

so that

(2k) dee\™F
I@(WS<) Mo 2.2)

m

for 0 < k < p(A)/2. Estimating

we obtain that

dee\ ™ dee\* i %)l Moy 4ee\ *
e I _\m ) P2 —(m—k) [ €€
<m> M2m—(m) M2k_1_[ o <e <m> M.

Therefore (using that 3k < 3p(A)/2 < m+ p(A))
|¢§c2k) (0)] < e~ MM Ny, < e R 7y,

Trivially, d)?kﬂ)(()) = 0 for all k. Hence 0 € Bp4)(¢y). On the other hand, by
Lemma 2.2,
dist(0, R \ Brats1(oy)) < 9eV/A.

Applying Lemma 2.3, we deduce that
H(p(A)) — H([A+3]) < 9eVA < 25VA,

in contradiction with the definition of p(A). This completes the proof of the
estimate m, < m.
Returning to (2.1) and recalling that m > p(A) > A, we obtain:

10m

1
ny < z(2A +8m,) < < 300h(2m) 2. O

€
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3. Proofs of the lemmas

In the proof of the Lemma 2.1, we use the following lemma which is borrowed
from the work of M. Lavie [9, Lemma 3].

Lemma 3.1. Let R C C be a closed convex set of diameter §. If f(z) is
analytic in R and vanishes at m points of R (counting multiplicity), then
max\f(k()lglmaxﬁ ™), 0<k<m. (3.1)
2€R (m —k)! zer
In [9], this inequality is proved by induction, using the formula

d* f(z) . 1/ ka) d
Tk = Cv

dzk o — 2z

valid if f(«) = 0. As mentioned in [9], (3.1) can be also proved using the Hermite
formula for divided differences.

Remark 3.2. By an approximation argument, the conditions of the lemma
can be relaxed as follows:

(a) if R = int R, then the lemma remains valid if instead of assuming that f is
analytic in R, we assume that f analytic in int R and that f, f/, f/, ..., f(™)
are uniformly continuous in R.

(b) If R C R, it suffices to assume that f € C™(R).
Proof of Lemma 2.1. Recall (see [13]) that the Stirling numbers of the second

kind are defined via
(- iy ()
l ! — j ’

so that
" (&
nk:Z{l}n(n—l) (n—101+1),
1=0
and that L Lk )
< < k=l « 2 p.2(k—1)
o= {if=a()e=a
Then
(2k) b e [k
67 7(0) = | > ann®| <> : D ann(n—1)---(n—1+1)
n>0 1=0 n>0
Eo(k 1k
- {l}'f(l)(l)‘ < 5z:kz(k—l)|f(l)(1)|
1=0 1=0
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hence
BP0 < Ly s By
f T2 (m—101" "
k k1
1 (2¢)m=* 2k?
<= Moy,
2 (m—k)! 2 ;(m—k
k k-1
1 (2e)m=*F 4k%e dee
=3 Mo, - Mo,
2(m—k)! 2 ; ( m m 2
provided that m > max(2k, 8k2¢). O
Proof of Lemma 2.2 (F. Nazarov). Define a sequence of independent random
variables X; so that X; ~ Unlf[—w W] and let Sy = X7+ -+ Xy. Then
N
|Snl < Z 7
and
N sin ”5

.S\

gN(f) = ECOS(ﬁsN) EeXp ZfSN = H

Therefore

Sn) = Z angn (V1) = ag + Z angn (V1

n>0 n>N+1
Now, for € > VN
N ~ N
vie) < I1% v < H%
therefore

ES(Sn)| > laol — > 7 Nan| > e A =7V,
n>N+1

Letting N = [A], we obtain that there exists = € [0,27/[A]] such that
lp(z)| > e (1 —e/m) > e 473,
For A > %, 21y/TA] < 9V/A, as claimed. For A < %,
6(0)] = 2 (1= ¢1/2) 3 = > A=, .

Proof of Lemma 2.3. We reproduce the original argurnent of Bang [2]. Tt
suffices to show that if z € By(¢) and h = |y — z| < 1 —1, then y € Bp_1(¢).




64

Sasha Sodin

Expanding ¢ in a Taylor series, we have for 0 < k < p — 1:

Wl < S ot (| 2y o) (| P
‘¢ (W’S z;) ‘¢> ](ff)‘ﬁ+‘¢ j(yl)‘(p_k)!
j:
p—k i
- ¥
<Y TP M6l -
j=0 o

Now we bound My ; < My(M,/M,_1)? and obtain:

p—k—1
0®) ()] < " P Mlglla, Y
7=0

Mp

_ eh-Me_ _
< e PM|pllay e Mot < eFTPHIM6]|a,, - O

e/ (My/Mp-1)’ W
J!
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IIpo kinbkicTh HYIIB PYHKIiA B aHATITUTHIX
KBa3iaHAJIITUYHUX KJlacax

Sasha Sodin

IIpocTtip anaiTUIHUX B OJUHUIHOMY Kpy3i DYHKII 3 piIBHOMIPHO Here-
PEPBHUMHU TIOX1THUMU HA3UBAETHCS KBAa31aHAJITUIHAM, SKIIO MEYXKOBI 3HAYTE-
HHSI HEHYJIBOBOI (DYHKIII 3 I[bOr0 KJIaCy HE MOXKYTb MaTH HYJ HECKiHYEHHOT
kparnaocti. Taki kiaacu 6yso ormcano Kapieconom, Poapirecom—Casninacom i
Kopenbiromom y 1950-1960x pokax. Henysbosa dyHKIlig 3 mpocTopy KBasi-
aHAJITUYHUX aHAJITUIHUX (DYHKIIH MOXKEe MaTH JIUIIEe CKiHYeHHY KiJIbKiCTh
HyJiB y 3aMKHeHOMY aucky. Hemomasao, Bopiues, ®pank i Boabbepr mo-
BeJII ABHY OIIHKY KIJIBKOCTI HYJB JJIsT BUNAIKY KBa3iaHATITUYHHAX KJlaciB
2Keppess. Mu goBoammo TOIiOHy OIHKY I 3araJbHAX aHAJITUTIHUX KBa-
3laHAMITHIHIX KJIACIB, BUKOPUCTOBYIOUH 3BEJCHHS 0 KJIACHIHOI TPOOIeME
KBa3laHAJIITUIHOCTI.

KirrowoBi cyioBa: KBa3iaHAJITHYHUN KJac, AHAJITUYHA KBa3iaHAJITH-
9HICTb, KITbKICTh HYJIIB.
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