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An Iterative Regularization Method for a
Class of Inverse Boundary Value Problems of
Elliptic Type
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This paper deals with the problem of determining an unknown source and
an unknown boundary condition %(0) in a boundary value problem of elliptic
type from extra measurements at internal points. The problem is ill-posed in
the sense that the solution (if it exists) does not depend continuously on the
data. For solving the considered problem an iterative method is proposed.
Using this method a regularized solution is constructed and an a priori error
estimate between the exact solution and its regularization approximation
is obtained. Moreover, the numerical results are presented to illustrate the
accuracy and efficiency of this method.
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1. Introduction

Let H be a separable Hilbert space with the inner product (-, -) and the norm
|| - |I. Consider the following problem:
uyy(y) — Auly) = f, 0 <y < +oo, (1.1)
u(0) =g, [ u(+o0) [[< 400,

where A : D(A) C H — H is a positive self-adjoint linear operator with a compact
resolvent. We denote by o(A) the spectrum of the operator A. Our purpose is
to identify an unknown boundary condition «(0) and an unknown source f from
the input data

U(Tl) = ¢1 € H, U(Tg) =Y € H 0<T) <Ty < 4o0. (1.2)

This problem is an abstract version of an inverse boundary value problem, which
generalizes inverse problems for second-order elliptic partial differential equations
in a cylindrical domain. A simple example of (1.1) is the boundary value problem
for the Poisson equation in the strip (0,1) x (0, +00). The operator A is taken to
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be _85722 with the domain D(A) = H}(0,1) N H?(0,1). Then we can formulate
(1.1) in the form

— Uyy — Uze = f(), O<x<l 0<y< +oo,
u(z,0) = g(z), 0<z<1, .

u(z,y) is bounded as y — oo, 0 <z <1.

The last problem has extensive applications to engineering problems dealing with
steady state heat conduction in heat generating media, groundwater flow with
recharge or depletion [15]. For other physical motivation and models we refer the
reader to [7,9,13].

The main difficulty in the study of the inverse problem (1.1)—(1.2) is that
it is ill-posed, i.e., even if a solution exists, it does not depend continuously on
the data. In other words, a small error in the data measurement can induce
a large error in the calculated solutions. Thus, special regularization methods
that restore the stability with respect to measurement errors are needed. In the
mathematical literature various methods have been proposed for solving ill-posed
problems. We can notably mention the iterative method introduced by Kozlov
and Maz’ya [10,11], which is based on solving a sequence of well-posed boundary
value problems such that the sequence of solutions converges to the solution of
the original problem. It has been successfully used for solving various classes of
ill-posed elliptic, parabolic and hyperbolic problems [1-5,16,17].

In the present work, we apply an iterative method proposed by G. Bastay [2]
for studying a class of inverse parabolic problems. We should notice that the
author only established theoretical results and did not give a numerical imple-
mentation. We point out that although the elliptic equation is very popular and
widely studied in the literature of inverse problems for PDEs, the results on the
simultaneous identification of the source term f and the boundary condition u(0)
are very scarce.

The paper is organized as follows. In Section 2, we give some tools which
are useful for this study. In Section 3, we introduce some basic results and show
the ill-posedness of the inverse problem. In Section 4, we present the iterative
method and give the convergence estimates. The numerical implementation is
described in Section 5 to illustrate the accuracy and efficiency of this method.

2. Preliminaries

Let (¢n)n>1 C H be an orthonormal eigenbasis corresponding to the eigen-
values (Ap)n>1 such that

App = M\pon, n € N,
O< A <A<, lim A\, = +o0,

n—o0

YVoe H b= ansana bn = (b’ Son)~

n=1
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For o € R, we introduce a Hilbert scale H* induced by v/A as follows:
o0
H*={be H:Y X|(b,pn)* < +o0},
n=1

with the norm

1
e} 2
10| 10 = (ZAW, wn>2> ,  beH"
n=1

For s > 0, C*([0, +00); H) denotes the space of s-times continuously differentiable
functions on [0, +00) with values in H. Finally, we denote by {S(y) = e‘yﬂ}yzo
the Cp-semigroup generated by —v/A on H,

S =D eV (b on)pn, Ve H.

n=1

Theorem 2.1 ([14]). For the family of operators {S(y)}y>0, we have the
following properties:

L[Syl <1 for every y > 0;

2. the function y — S(y), y > 0, is analytic;

3. S(y): H — D(A™/?) for everyy > 0 and r > 0;

4. for every b € D(A™?) and r >0, S(y)A"/?b = A"/2S(y)b;
5. for every y > 0, the operator AT/QS(y) 18 bounded.

The next result will be used to study the regularity of the solution to the
direct problem corresponding to the inverse problem (1.1)—(1.2).

Theorem 2.2 ([8, Theorem 1.4]). For each £ € H, the problem

(2.1)

V() +VAy) =€ 0<y < too,
v(0)

has a unique solution v € C([0,400), H) N C*((0,400), H) for each 1 € H.

Moreover, if 1 € D(v/A), then v € C1([0, +o0), H).

We complete this section by giving a result concerning nonexpansive opera-
tors.

Definition 2.3. A linear bounded operator L : H — H is called nonexpan-
sive if || L] < 1.

Let L be a nonexpansive operator. To solve the equation
(I —L)p =1, (2.2)

we state a convergence theorem for a successive approximation method.
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Theorem 2.4 ([12]). Let L be a nonexpansive, self-adjoint positive operator
on H. Let v € H be such that equation (2.2) has a solution. If 1 is not an
etgenvalue of L, then the successive approzimations

Yr+1 = Ly +v¢, k=0,1,2,...

converge to a solution to (2.2) for any initial data oo € H. Moreover, LF¢ — 0
for every p € H as k — +o0.

3. Basic results

3.1. The direct problem. For given functions v, & € H, consider the
direct problem

{ w’(y) — Aw(y) = €, 0 <y < +o0, (3.1)

w(0) =v, | w(+oo) [|< +o0.
For problem (3.1), we introduce the following theorem.

Theorem 3.1. Let (,¢) € H x H. Then problem (3.1) admits a unique
solution w € C([0,4+00), H) N C1((0, +00), H).

Proof. First, we determine the fundamental solutions. By using the method
of diagonalization, we write

w(y) =Y wa(y)en, (3:2)
n=1
where wy,(y) = (w(y), ¢n). We also have
£ = 25”90” and w(0) = an(O)cpn == angon. (3.3)
n=1 n=1 n=1

From (3.1), (3.2) and (3.3), we get a second-order family of differential equations

w;{(y) - )‘nwn(y) =&, 0<y<oo,
wn(o) = wna

+oo (34)
D [ wn(o0) P < +o0.
n=1
For each fixed n, the general solution to the homogenous equation
wh — Awy, =0 (3.5)

is given by
clneym + czne*ym, Cin, Con € R, (3.6)
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where w1, (y) = cineV Y and wan(y) = Cone~ VY are a pair of fundamental
solutions. It is easily verified that —/\%fn is a particular solution to the nonho-
mogeneous equation

wlh — Mwy, = & (3.7)

So, the general solution to equation (3.7) is given by

o s wal |
= c1ne?V" + cone YV — —

An n-

Wy (y)
From the convergence of the series "% |w,(c0)|? and the condition wy,(0) =
¥, it follows that c¢1, = 0 and cop, = ¥, + ﬁ{n. Hence, the solution to problem
(3.4) is given by
1

— o WAy,
eV —

wn (y) (1—e ¥y

n-

Thus, the solution of problem (3.1) takes the form

oo B 1 B
w(y) =D (e = (1= e ) on = SWY - K()e,  (38)

n=1 n
where S(y) = e ¥V4 and K(y)=A"1I~- e*y‘/z). It is clear that the expression
(3.8) solves the problem

V(y) + VAu(y) = —AT3E,  0<y< oo, 39)
v(0) = 1.
By virtue of Theorem 2.2, we can easily check that
w e C([0,400), H) N CH((0,+00), H). O

3.2. Instability of the inverse problem. Now we wish to solve the inverse
problem, i.e., to find the pair of functions (f,g) in the system (1.1). Making use
of the supplementary conditions (1.2), we have

u(Ty) = S(Th)g — K(Th) f = 41, (3.10)
u(Ty) = S(Tr)g — K(12)f = to. '
From (3.10), we derive the system
(K(T2) — K(T1)) f = S(T2)r — S(Th)ye. (3.11)
(K(Tz) — K(T1))g = K(T2)1 — K(T1)vs. '
Hence, we look for a solution (f,g) to the system
Bf = S(Tz)r — S(T1)ve, (3.12)
Bg = K(T2)y1 — K(T1)y2,
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where

B=K(Ty) — K(Ty) = A~ (S(Th) — S(T1)).

It is easily seen that B is a linear, injective, compact and self-adjoint operator
with the singular values

ele \ An _ €7T2 Vv )\n
An ’

O = n=1,23,....

Remark 3.2. As for many ill-posed boundary inverse value problems for par-
tial differential equations, the study of problem (1.1) is reduced to the study of
operator equations of the first kind of the form Bb = 7. From the injectivity of

B, we obtain
o

1
b=B"'n=> —,0)0n.
n=_ —(n.¢n)e

n=1 "

Since i — 00 as n — 00, the inverse problem is ill-posed, i.e., the solution does
not depend continuously on the given data. Our purpose is to construct a stable
approximation to the solution by using the iterative method. The main idea is
to write the equation Bb = 7 in the following way:

b= —yB)b+~n=Lb+n,

where « is a positive number satisfying v < 1/||B||. Then we will show that the
operator L is nonexpansive and 1 is not an eigenvalue of L. Thus, it follows from
Theorem 2.4 that (bg)ren+ converges, and for every b € H, (I — yB)kb — 0 as
k — +o0.

4. Iterative procedure and convergence results

The alternating iterative method is based on reducing the ill-posed problem
(1.1), (1.2) to a sequence of well-posed boundary value problems and consists of
the following steps. First, we start by letting fo, go € H be arbitrary. Let ug be
a solution to the direct problem

ug — Aug = fo, 0 <y < oo,
U (0) = 9o,
||uo(400)|| < +o0.

Then the initial approximate solution is

uo(y) = S(y)go — K(y) fo-

Let my = vo(Th) —v1(T3) and 1o = wy(T2) — wa(T1), where v;, for i = 1,2, are the
solutions to the problem
VZ(I—AI/i:@Di, 0 <y < oo,
Vi(O) = 0, (4.1)
[[vi(+00)|| < +o0,
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and w; are the solutions to the problem

w! — Aw; = 0, 0<y < oo,
wi(0) = i, (4.2)
||lwi(+00)|| < +o0.
That is,
m = K(Ta)hr — K(T1)s (4.3)
and
n2 = S(Ta)hr — S(T1)1he. (4.4)

If the k-th approximate solution has been constructed, we let vy be the solution
to the problem
v — Avg =g, 0<y<oo,

v(0) =0, (4.5)
|vg(+00) || < +o0.
Then
ur(y) = —K(y)gk-
Furthermore, let wy, be the solution to the problem
wy — Awg = fr,  0<y < oo,
wg(0) =0, (4.6)
[[wg (+00)[| < +o0,

that is,
wi(y) = —K(y) fr

Then, let

gkr1 = gk — Y(r(T1) — vi(T2) — m), (4.7)

Jer1 = fe — y(wi(T1) — we(T2) — m2), (4.8)
where v is such that

1

and || B|| = sup,,en- e~ ™1 ﬁ"); e~T2VAn Finally, we get ug,1 by solving the problem

U/];_’_l — A’LLk+1 = fk+1, 0 < Yy < oo,
u41(0) = Gr1, (4.10)
[[ttgt1 (+00) || < +o0.

Hence,
up1(y) = SW) k1 — K () frs1-

Now we introduce some properties and tools which are useful for our main theo-
rems.
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Lemma 4.1. Let T be a positive constant, then we have the estimate
(1—e¥AT)

A
Proof. To prove (4.11), it suffices to establish that

> VATT2 )\ > (4.11)

Fi(p)=1—(1+p®e >0 pu>0. (4.12)

We have

F(p) = (n—1)7%">0, p>0.
Since F} is nondecreasing, it follows that Fy(u) € (0,1). So Fi(u) > 0, u > 0.
Choosing 1 = T+/X in (4.12), we obtain (4.11). O

Lemma 4.2. The norm of the operator K(y) is given by

1 — e WA 1 eyVN
K = sup = .
K@) = sup =5~ =
Proof. We aim to find the supremum of the function %, n € N*. For

this purpose, fixing v, letting 1 = yv/A and defining the function

1—e#
Fy(u) = 2 for > p =y,
we compute
w+2)e -2
Ry = Wr2er =2
2 ,U?’
Put
F3(p) = (n+2)e " —2.
Hence,
Fy(p)
Fy(p) = R

To study the monotony of Fb, it is sufficient to determine the sign of F3. We have
Fy(p) = —(p+1)e " <0, > p > 0.

Then Fj is decreasing, moreover, F3(u) C (—2,0). Hence F3(p) < 0, p > pq,
which implies that F5 is decreasing and

sup Fo(p) = Fo(pr).

12g751
Therefore,
1— e WA ] _ ey
su = .
nZIi A'n )\1
Moreover,
sup [|K(y)]| = sup ———— < . (4.13)
y€[0,+00) y>0 1 1

The lemma, is proved. ]
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Proposition 4.3. For the linear operator L = I — B, we have the following
properties:

1. L is positive and self-adjoint,
2. L 1s nonexpansive,
3. 1 is not an eingenvalue of L.

Proof. From the properties of the operator A and the definition of L, it follows
that L is a self-adjoint nonexpansive positive operator. From the inequality

(efﬁTl B e—ﬁTg)

3 <1 for\eo(A),

0<1l—v

it follows that the point spectrum of L, o,,(L) C (0,1). Then 1 is not an eingen-
value of the operator L. O

Lemma 4.4 ([6]). Let k € N, k > 2, p > 0. Then the function
G(t)=(1—t)" (1 +1n(1/1) 7, (4.14)

defined on [0, 1], satisfies
G(t) < C(lnk)™P.

Proposition 4.5. Let k> 2, p > 0, and v satisfy (4.9). Then

e*Tl A% )\n — 67T2 A An
An

[MIS]

11—~ YA, 2 <TP(nk)™,  neN- (4.15)

Proof. Let A € [A1,+00). Define the function

e_Tl\/X _ e_TQ\/X k
P(N) = (1 - 3 ) (V)P

Write it as

d(N) = <1 _ 71ele\A(l _ o~ (T=T1)VX

k
NTy —T))2 )> (VAT) P13, (4.16)

where v; = v(Ty — T})?. Using inequality (4.11), we obtain

6(N) < (1= e V(YT T (4.17)

TovA

Putting t = e~ , we obtain

6(N) < (1= me PVOIVNTL) PTE = (1= mt)*(In(1/8)) T3 (4.18)
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Now, basing on some techniques similar to those used for establishing inequality
(4.14), we can prove the estimate

Gi(t) = (1 — yt)*(In(1/t))P < (Ink)™P, te]0,1], (4.19)

with 0 < 1t < 1. The idea is to show that there exists a positive constant g
such that G is monotonically increasing in [0, %) and monotonically decreasing
in (to, 1]. Since G is continuously differentiable in [0, 1], G1(t) > 0, and G1(0) =
G1(1) = 0, it follows that the maximum of G; is attained at an interior point,
which is a critical point of G1. From

G1(6) =~ (1= ) Hn(1/0) > (e (1 (1) +0) =),

it follows that the critical point of G in (0, 1) satisfies

(o (o3 ) ) -

We introduce the auxiliary function

I(t) = <”1t <kln @ +p> _p>'

For k sufficiently large,

r(1/m = (P ) s

For a > 1 and k sufficiently large, we have

P(1/k%) = (VW —p> <0

Therefore, there exists kg(a) such that
k™) <0 for all k> ko(a),
Lk >0 for all k > ko(a).

Consequently, a critical point t* of G'; must lie between k=% and k~!. Then, for
k > max(ko(a),2), we have

Gi(t) = (1 =mt)* (n(1/)) 77 < G (t").
On the other hand,

G1(t) = (1= 1t (n(1/£) 7 < (n(1/£) 7 < (nk)™. (4.20)
So, for any t € [0, 1], we have
Gi(t) < (Ink)"P. (4.21)
From (4.18) and (4.21), we obtain
d(N) <TP(Ink)™P, A€ [A\i,+00), (4.22)

and from the estimate (4.22), there follows (4.15). O
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Theorem 4.6. Let u be a solution to the inverse problem (1.1), (1.2). Let
fo, g0 € H be arbitrary data elements for the iterative procedure proposed above
and uy be the kth approrimate solution. Then we have

(a) The method converges, i.e.,

sup |luk(y) —u(y)|| =0 as k — +oo. (4.23)
y€[0,400)

(b) Moreover, for any a; > 0, ag > 0, and g, f such that

| g0 =g |lHr < Er, || fo— f ||lHe2< Eo (4.24)

with some E1 > 0 and Ey > 0, the rate of convergence of the method is given
by

[Sup | luk(y) — u(@)|| < T2+ A (Ink) P (By + Es), (4.25)
y€[0,4+00

where 1 = min(ay, az) and P2 = max(ay, ag).

Proof. (a) Iterating in (4.7) backwards, we obtain

Gk+1 = gk — V(K (T2) — K(T1)) g9k +vm
k

= (I —yB)gr+ym = =B go+ 4> (I —yBYm.  (4.26)
=0

Furthermore,
gii1 = (I —vB)** (g0 — B™'m) + B~ 'y

In the same manner, we get
ferr = (I =vB)* ' (fo— B~'m2) + B 'na.

Thus, the approximate solution uy is given by

u(y) = S(y)(I —vB)*(go — B~ m) + S(y) B 'm
— K(y)(I = vB)*(fo — B™'n2) — K(y)B™ . (4.27)

From (3.12), (4.3) and (4.4), it follows that g = B~'n; and f = B~ 1. Thus,
ur(y) —uly) = ST —7B)*(90 — 9) = KW)I —7B)*(fo— f).  (4.28)

From the triangle inequality, we have

lu(y) — @)l < 1SW)I —vB) (g0 — )| + 1K (y)(I — vB)*(fo — 1)l
< IS T —~vB)*(go — 9)||
+ ([ KWIIT =B (fo — )l (4.29)
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Using the property 1 of Theorem 2.1, the estimate (4.13) and passing to the
supremum with respect to y € [0, +00), we derive

sup lur(y) = u()l < 11 =7B)* (g0 — 9)ll + AT T = vB)*(fo = )]l

By virtue of Proposition 4.3 and Theorem 2.4, it follows that

sup luk(y) — u(y)| =0 as k — oc.

Y=
(b) We have
lur(y) — u@)|l < VI + VI, (4.30)
where
L =|[(I = vB)*(g0 - 9)II
> VAT _ VAT \ |
2
=2 (1= 5 (90— 9. 2n)|

n=1 n

and

I, = AT = vB)*((fo — )II?
oo 7\/ET1 _ *\/ETQ 2k
:A12;<1—7<e Ane >> (fo — fren) >

We compute

0 VAT VAt \ |
e —e
11=Z<1—7< )\ )) (90 — g, o)
n=1 n
e e~ VATt _ o=VAnT2 2k 9
:Z L—x Y )‘;al)‘%ll(go_ga(pn)‘
n=1 n
o oo
= > (B())* A2 (90 — g, 0n) > < sup(d(An))® D Aa (g0 — g, ),
n=1 n n=1
_ _ k _o1
where ¢(\,) = (1 — (e mTl/\T nts )) An 2 . By virtue of Proposition 4.5,
we obtain
I < (Ink) 23 g2 (4.31)
In the same manner, we get
Iy < A% (Ink) 2027202 B2, (4.32)

Combining (4.30) with (4.31) and (4.32), we have

Fup ) lu(y) = u@)| < T3 (1 + A7) (k)= (B + Es). (4.33)
y€[0,+00
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Passing to the supremum with respect to y € [0, 4+00) in (4.33), we obtain (4.25).
Since in practice the measured data ; and 1 are never known exactly, it is our
aim to solve the system from the knowledge of the perturbed data functions ¢
and wg satisfying

lr = w1l + [l — w31l <6, (4.34)
where § > 0 denotes a noise level. In the following theorem, we consider the case
of inexact data. O

Theorem 4.7. Let fy, go be arbitrary data elements for the iterative proce-
dure proposed above such that (4.24) holds and let uy (respectively, ug) be the
k-th approximate solution corresponding to the exact data 11, s (respectively,
to the inexact data ¥, 13) such that (4.34) holds. Then we have the following
estimate:

sup fug(y) = u()| < (1+ A7) @7k + T2 (Ink) P (B + By)).  (4.35)

y€[0,+00)
Proof. Let
k—1 '
g = (I —vB)*go+~Y (I —~B)in,
§=0
k—1 '
fo=I =B fo+~> (I —~B)n,,
=0
up(y) = SW)gr — K(y) fr,
k—1
g = —vB)fgo+~7Y (I —yBYnyl, (4.36)
§=0
k—1 '
=B fo++> (I —yBYynS, (4.37)
j=0
uy(y) = S(y)gh — K(v) fe,
with

77(15 = K(TQ)@Z)‘Is — K(T1)¢g and ng = S(Tz)T/)ij - S(T1)¢g-

Then we have

I — || = | K (T) (1 — ¥3) — K (T1) (b2 — 43) ||

<Ay — D)+ N2 — ¥311) < ALY, (4.38)
In2 = n3l| = 1S (Ta) (b1 — 9b3) — S(T1) (b — )|
< by — 9| + o2 — W3 < 6. (4.39)

Using the triangle inequality, we have

5 5
lug = wll < flug — wll + lur — ull (4.40)
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We compute

Il () = ur Il < 1S() gk — gl + 1K ) (5~ fil
k-1

k—
<A DT =ABY () —m)|| + ATy Z (I —~yBY (n5 —12)
7=0 7=0

Using (4.38) and (4.39), we obtain

k—1 k—1
[ud (y) — ur@)Il < v [ D NI =B + A>T =B
=0 =0

Since ||I —yB|| < 1, it follows that

sup  [|up(y) — u(y)ll < (1+A7H)dvk. (4.41)
y€[0,+00)

Combining (4.40) with (4.25) and (4.41), then passing to the supremum with
respect to y € [0, +00), we obtain the estimate (4.35). O

Remark 4.8. If we choose the number of iterations k() such that k(§) — 0
as § — 0, we obtain

sup  J[ul(y) —u(y)| =0 as k— +oc.
y€[0,+00)

5. Numerical implementation

In this section, an example is devised for verifying the effectiveness of the
proposed method. Consider the problem of finding the functions f(x), g(x) and
u(z,y) in the system

( 2 82
aiygu( ) Ox 9.2 (.’L‘ Z/) f( )7 ($7y) S (07 1) X (07+OO)7
U(O,y) = U(l,y) = 07 RS [07 +OO)7
u(z, +00)]| < +oo, 0<e<l, (5.1)
u(z,0) = g(x), 0<z<1,
u(x,1/2) =¢1(x), u(z,1) =a(z), 0<ax <1.

Let A = _5%22 be the differential operator with D(A) = HE(0,1) N H?(0,1) C
H = L*(0,1). Then

A =072, @ = \/isin(mm:), n=12 ...,

are its eigenvalues and orthonormal eigenfunctions, which form a basis for H.
The solution of the above problem is given by

_ e—(nmy
£L‘ y Z ( ~(nmy (Pn) - 1(271_)2(f7 @n)) Pn;s
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where for b € H, b, = (b, ¢ \[fo )sin(nws)ds, n =1,2,.... From (4.36)
and (4.37), by choosing fo = go =0, we get
k—1 oo el
x) =27y Z 2(1 — o)’ / (ﬁgnwf(s) - ﬁlrﬂbg(s)) sin(nms) sin(nwz) ds
j=0n=1 0
and
k—1 oo
Z Z 1 —~yon) / (agnlﬂf(s) - alnwg(s)) sin(nms) sin(nnz) ds,
j=0n=1
_ (6_%—67HW _ (1—6_221) (1 e "7 ) _
where o, = amr o M = oz Qan = , Bin = € , and
Bon = e "7,

We use the trapezoidal rule to approach the integral and do an approximate
truncation for the series by choosing the sum of the front M + 1 terms. After
considering an equidistant grid

1—1

0:x1<x2<-~-<xM+1:1, xT; = ,i=1,...,.M+1,

we get the discrete approximations

g = (GR(@1), g (22), -, g (@ars)) and [ = (SR (@), fR(z2), - fR(2ar41))
of (4.36) and (4.37), respectively, given by

k-1 M+1 N
O(x) = QhVZ Z Z (1 —~oy) <a2n¢1 () — alnqbg(azi))sin(nwxi) sin(nmxy),
0 i=1 n=1
]kfl M+1 N '
f(xy) = 2h’yz Z Z(l — yoy,)? <Bgnw‘f(aﬁi) - Blnwg(mi))sin(nﬂxi) sin(nmay),

j=0 i=1 n=1

where h = 1/M and the inexact data are obtained by adding a random distributed
perturbation to each data function. Hence,

Y° = 1) 4 e randn(size(v))),

here ¢ indicates the noise level of the measurements data, and the function
randn(-) generates arrays of random numbers whose elements are normally dis-
tributed with mean 0, variance 02 = 1 and the standard deviation o = 1. The
function randn(size(g)) returns an array of random entries that is of the same
size as Y. The bound on the measurement error § can be measured in the sense
of root mean square error (RMSE) according to

N 2\ 2
6= 4" e = <M+ P 2 (v - v) ) .
The relative error Rer(f) is given by
|5 =l

Rerlh) = =171,



An Iterative Regularization Method 81

Example 5.1. It is easy to see that if f(x) = —27%sin(nz) and g(x) = sin(7x),
then u(z,y) = (2 — e” ™) sin(wz) is the exact solution to problem (5.1). Conse-
quently, ¥ (x) = (2 — 67%71-) sin(mzx) and ¥9(z) = (2 — e ™) sin(mz).

Table 5.1: The relative errors Rer(f) and Rer(g) with M = 300, k = 6, ¢ = 0.1
and w = 53.9435.

N 2 5 7 10 15 20 50 70
Rer(f) 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031
Rer(g) 0.0713 0.0776 0.0782 0.0784 0.0786 0.0786 0.0786 0.0786

Table 5.2: The relative errors Rer(f) and Rer(g) with N = 10, k = 6, ¢ = 0.1
and w = 53.9435.

M 10 50 100 150 200 250 300 350
Rer(f) 0.0554 0.0014 0.0140 0.0043 0.0067 0.0051 0.0031 0.0035
Rer(g) 0.4846 0.4094 0.1918 0.1018 0.1026 0.0946 0.0784 0.0797

Table 5.3: The relative errors Rer(f) and Rer(g) with M = 300, N =10, k =6
and w = 53.9435.

€ 0.5 0.1 0.01 0.001 0.0001
Rer(f) 0.0165 0.0031 3.0911le —004 3.0366e — 005 9.7455e — 006
Rer(g) 0.3921 0.0784 0.0078 7.8955e — 004 8.4171e — 005

Table 5.4: The relative errors Rer(f) and Rer(g) with M =300, N =10, k=7
and w = 53.9435.

€ 0.5 0.1 0.01 0.001 0.0001
Rer(f) 0.0100 0.0036 3.6057e —004 3.5887¢ — 005 3.5418e — 006
Rer(g) 0.4423 0.0885 0.0088 8.8504e — 004 8.8934e — 005

Tables 5.1 and 5.2 show the influence of N and M respectively on the relative
errors. From Table 5.1, we find that N has a small influence on the relative error
when it becomes larger. From Table 5.2, we see that the degree of ill-posedness
of the numerical problem does not increase with the refinement of the mesh used.
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¥ : : : _ Exact solution |
_......: ....... ....... ....... ___8=05 _

f(x) and its approximations

Fig. 5.1: The comparison between f and its computed approximations for k = 6,
M =100, N = 10, with different noise level.

The iterative regularization method
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Fig. 5.2: The comparison between f and its computed approximations for k = 6,
M =100, N = 10, with different noise level.

Tables 5.3 and 5.4 give the relative errors with different amounts of noise added
into the data for k = 6 and k = 7 respectively.
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Figure 5.1 (respectively, Figure 5.2) compares the function f (respectively, g)
and its computed approximations with different noise level. It can be seen that
as the amount of noise € decreases, the regularized solutions approximate better
the exact solution, and for the function f, even with the noise level € = 0.1, the
approximate solutions are still in good agreement with the corresponding exact
solution.

6. Conclusion

In this paper, we have extended the iterative method for identifying an un-
known source term and an unknown boundary condition in a class of inverse
boundary value problems of elliptic type. The convergence results were estab-
lished, and the error estimates were obtained under an apriori bound of the exact
solution. The presented numerical examples justified the efficiency and accuracy
of the method.

Acknowledgment. This work is supported by the CNEPRU Projet of Al-
geria, code COOLO3UN230120150012.
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ITepaTuBHMIT MeTO/| peryasgapu3aliii A KJjacy
obepHEeHNX KpalioBUX 3a7a4 €JINTUIHOTO THUILY

Fairouz Zouyed and Souheyla Debbouche

Y nmamiit poboTi pO3TIAIAETHC TTpobIeMa BU3HAMEHHST HEBIIOMOTO T7Ke-
pesia Ta HeizoMol rparndHOl yMoBu 1 (0) 1y KpaiioBol 3a1a4i elinTuIHOro
THUILY 3a JaHUMU JIOIATKOBUX BUMIDIOBaHb y BHYTPIIIHIX TOYKaX. 3ajada €
HEKOPEKTHOIO B TOMY CEHCI, 1m0 i1 pO3B’g30K (SKIIO BiH iCHye) HEe 3a/Ie2KUTh
HemepepBHO Bin manux 3ama<di. s po3s’sa3annas 1miel 3amadi 3aponoHOBa-
HO iTepaTuBHUI MeTOx. 3a JIOMOMOIOI0 IHOIO METOJY MOOYIOBAHO PEryJis-
pU30BaHMit PO3B’SI30K 1 OJEPKAHO AMPIOPHY OIIHKY TMOXUOKH MiK TOTHUM
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PO3B’I3KOM Ta #ioro peryssipusaiiiero. KpiM Toro, mpeicraB/ieHO IUCIOBI pe-
3YJIBTATH JJIs LIIOCTPAIlil TOIHOCTI Ta ePEeKTUBHOCTI IIHOI0 METOY.

KirrowoBi ciioBa: obepHeHa 3a/1a9a, HEKOPEKTHA, 3a/1ata, eJIIITUIH] 331841,
METO/I, PEryJIAPU3AILii.
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