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The paper is concerned with the correlation functions of the character-
istic polynomials of real random matrices with independent entries. The
asymptotic behavior of the correlation functions is established in the form
of a certain integral over unitary self-dual matrices with respect to the in-
variant measure. The integral is computed in the case of the second order
correlation function. From the obtained asymptotics it is clear that the
correlation functions behave like that for the Real Ginibre Ensemble up
to a factor depending only on the fourth absolute moment of the common
probability law of the matrix entries.
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1. Introduction

The ensemble of random matrices with independent entries was introduced
by Ginibre in 1965 [19]. To be exact, he introduced a partial case when entries
of the matrices have a Gaussian distribution. Anyway, the ensemble appeared to
be significant and has been attracting scientists’ attention since that time.

Random matrices with independent entries are usually considered over com-
plex numbers, real numbers or quaternions. An asymptotic behavior of the cor-
relation functions of the characteristic polynomials was recently computed in the
complex case [2]. The goal of the current paper is to establish a similar result in
the real case.

Let us proceed to precise definitions. We consider the matrices of the form

Mn =
1√
n
X =

1√
n

(xjk)
n
j,k=1, (1.1)

where xjk are i.i.d. real random variables such that

E{xjk} = 0 and E{x2
jk} = 1. (1.2)
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Here and everywhere below E denotes the expectation with respect to all ran-
dom variables. This ensemble has various applications in physics, neuroscience,
economics, etc. For detailed information, see [3] and references therein.

Define the Normalized Counting Measure (NCM) of eigenvalues as

Nn(∆) = #{λ(n)
j ∈ ∆, j = 1, . . . , n}/n,

where ∆ is an arbitrary Borel set in the complex plane,
{
λ

(n)
j

}n
j=1

are the eigen-

values of Mn. The NCM is known to converge to the uniform distribution on the
unit disc. The distribution is called the circular law. This result has a long and
rich history. Mehta was the first who obtained it for xjk being complex Gaussian
in 1967 [28]. The proof strongly relied on the explicit formula for the common
probability density of eigenvalues due to Ginibre [19]. Unfortunately, there is no
such a formula in the general case. That is why other methods have to be used.
The Hermitization approach introduced by Girko [20] appeared to be an effective
method. The main idea is to reduce the study of matrices (1.1) to the study of
Hermitian matrices using the logarithmic potential of a measure

Pµ(z) =

∫
C

log |z − ζ| dµ(ζ).

This approach was successfully developed by Girko in the next series of works
[21–24]. The final result in the most general case was established by Tao and
Vu [39]. Notice that there are a lot of partial results besides those listed above.
The interested reader is directed to [5].

The Central Limit Theorem (CLT) for linear statistics of real non-Hermitian
random matrices was proven in some partial cases in [26, 30, 31, 40]. The best
result for today was obtained by Cipolloni, Erdős and Schröder in [12]. They
proved CLT for a bit more than twice differentiable test functions assuming that
the common distribution of matrix entries has finite moments. A local regime for
matrices (1.1) was studied in [6, 10, 40]. In [6], the k-point correlation function
and its asymptotic behavior were computed for the Real Ginibre Ensemble (i.e., if
matrix entries are Gaussian, this ensemble is often referred as GinOE similarly to
the Gaussian Orthogonal Ensemble (GOE) in the real symmetric case). In [40], it
was established that the k-point correlation function converges in vague topology
to that for GinOE if xjk has the first four moments as in the Gaussian case.
The condition of matching moments was recently overcome at the edge of the
spectrum (i.e., |z| = 1) in [10].

One can observe that non-Hermitian random matrices are more complicated
than their Hermitian counterparts. Indeed, the Hermitian case was successfully
dealt with using the Stieltjes transform or the moments method. However, a
measure in the plane can not be recovered from its Stieltjes transform or its
moments. Thus these approaches to the analysis fail in the non-Hermitian case.

The present paper suggests using the supersymmetry technique (SUSY). It is
a rather powerful method which is widely applied at the physical level of rigor (for
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instance [17, 29]). There are also a lot of rigorous results, which were obtained
using SUSY in the recent years, e.g., [11, 13, 14, 33–35] etc. The supersymmetry
technique is usually used in order to obtain an integral representation for ratios
of determinants. Since the main spectral characteristics such as density of states,
spectral correlation functions, etc. often can be expressed via ratios of determi-
nants, SUSY allows one to get the integral representation for these characteristics
too. For a detailed discussion on connection between the spectral characteristics
and the ratios of determinants, see [7, 25,38]. See also [18,32].

Let us consider the second spectral correlation function R2 defined by the
equality

E

{
2

∑
1≤j1<j2≤n

η
(
λ

(n)
j1
, λ

(n)
j2

)}
=

∫
C2

η(λ1, λ2)R2(λ1, λ2)dλ̄1dλ1dλ̄2dλ2,

where the function η : C2 → C is bounded, continuous and symmetric in its
arguments. Using the logarithmic potential, R2 can be represented via ratios of
the determinants of Mn with the most singular term of the form

ε0∫
0

ε0∫
0

∂2

∂δ1∂δ2
E

{
2∏
j=1

det ((Mn − zj)(Mn − zj)∗ + δj)

det ((Mn − zj)(Mn − zj)∗ + εj)

}∣∣∣∣∣
δ=ε

dε1dε2. (1.3)

The integral representation for (1.3) obtained by SUSY will contain both com-
muting and anti-commuting variables. Such type integrals are rather difficult to
analyze. Based on this reason, one should study a similar but simpler integral
to shed light on the situation. This integral arises from the study of the cor-
relation functions of the characteristic polynomials. Moreover, the correlation
functions of the characteristic polynomials are of independent interest. They
were studied for many ensembles of Hermitian and real symmetric matrices, for
instance, [1, 8, 9, 34,36,37] etc.

Let us introduce the mth correlation function of the characteristic polynomials

fm(Z) = E

{
m∏
j=1

det (Mn − zj) (Mn − zj)∗
}
, (1.4)

where
Z = diag{z1, . . . , zm} (1.5)

and z1, . . . , zm are complex parameters which may depend on n. We are interested
in the asymptotic behavior of (1.4), as n→∞, for

zj = z0 +
ζj√
n
, j = 1, 2, . . . ,m, (1.6)

where z0 is either in the bulk (|z0| < 1) or at the edge (|z0| = 1) of the spectrum
and ζ1, . . . , ζm are n-independent complex numbers. In the present paper, we
confine ourself to the case of real z0 in the bulk.
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In order to formulate the main result of the paper let us introduce some
notations. Put

Jk =

(
0 Ik
−Ik 0

)
, (1.7)

where Ik is a unit k × k matrix. We omit the dimension index when it is clear
from the context. For any even size matrix A its dual matrix AR is defined as
follows:

AR = −JATJ, (1.8)

where AT stands for the transposed matrix. The main result of the paper is

Theorem 1.1. Let an ensemble of real random matrices Mn be defined
by (1.1) and (1.2). Let also the first 2m moments of the common distribution of
entries of Mn be finite and zj, j = 1, . . . ,m, have the form (1.6). Then

(i) the mth correlation function of the characteristic polynomials (1.4) satisfies
the asymptotic relation

lim
n→∞

n−m
2+m fm(Z)

f1(z1) · · · f1(zm)
= Cm,z0e

m2−m
2 (1−z20)

2
κ4

×
∫

V=V R
V ∈U(2m)

exp

{
1

2
tr ŽV ŽRV ∗ − 1

2
tr ŽŽR

}
dµs(V ), (1.9)

where Cm,z0 is some constant, which does not depend on the common distri-
bution of entries and on ζ1, . . . , ζm; κ4 = E{x4

11} − 3, U(2m) is a unitary
group, the probabilistic measure dµs(V ) corresponds to the differential form

det−m+1/2 V
∧

j,k≤m
dvjk

∧
j<k≤m

dvj,k+m ∧ dvk+m,j (1.10)

and
Ž = diag{ζ̄1, . . . , ζ̄m, ζ1, . . . , ζm}. (1.11)

(ii) in the particular case m = 2, the integral over self-dual unitary matrices can
be computed, and we have

lim
n→∞

n−2 f2(Z)

f1(z1)f1(z2)
= C2,z0e

(1−|z0|2)
2
κ4

Pf(K(ζj , ζk))
2
j,k=1

4(ζ1, ζ2, ζ̄1, ζ̄2)
,

where 4(ζ1, ζ2, ζ̄1, ζ̄2) is a Vandermonde determinant of ζ1, ζ2, ζ̄1, ζ̄2, and

K(ζj , ζk) = e−
|ζj |

2

2
− |ζk|

2

2

(
(ζj − ζk)eζjζk (ζj − ζ̄k)eζj ζ̄k
(ζ̄j − ζk)eζ̄jζk (ζ̄j − ζ̄k)eζ̄j ζ̄k

)
.

Theorem 1.1 shows that the asymptotics of f2 (here and below we omit Z
only if Z = diag{z1, . . . , zm}) is similar to the asymptotics of the 2-point spectral
correlation function (see [6]). Besides, it is naturally to put a conjecture about
the form of the asymptotic behavior of fm for any m.
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Set of matrices Matrix Column Entry

Q Qp,s q
(p,s)
αβ

Ξ Ξp,s ξ
(p,s)
αβ

Φ φj φkj
Θ θj θkj

Yk,p,s y
(k,p,s)
αβ

U ukj
V vkj

Table 1.1: Notation correspondence

Conjecture 1.2. In the setting of Theorem 1.1 we expect that for any m

lim
n→∞

n−m
2+m fm(Z)

f1(z1) · · · f1(zm)
= Cm,z0e

m2−m
2 (1−z20)

2
κ4

Pf(K(ζj , ζk))
m
j,k=1

4(ζ1, . . . , ζm, ζ̄1, . . . , ζ̄m)
.

The paper is organized as follows. Section 2 is devoted to the derivation of the
suitable integral representation for fm by using the SUSY approach. In Section 3,
we apply the steepest descent method to the obtained integral representation and
find out the asymptotic behavior of fm. For the reader’s convenience, the latter
section is divided into two parts treating the Gaussian and the general cases
respectively.

1.1. Notations. Throughout the paper, lower-case letters denote the
scalars, bold lower-case letters denote the vectors, upper-case letters denote the
matrices and bold upper-case letters denote the sets of matrices. We use the same
letter for a matrix, for its columns and for its entries. Table 1.1 shows an exact
correspondence. Besides, for any matrix A we denote by (A)j its j-th column
and by (A)kj , its entry in the k-th row and in the j-th column.

The term “Grassmann variable” is a synonym for “anti-commuting variable”.
The variables of integration φ, ϕ, θ, ϑ, ρ, ξ, τ and ν are Grassmann variables, all
the other variables of integration unspecified by an integration domain are either
complex or real. We split all the generators of the Grassmann algebra into two
equal sets and consider the generators from the second set as “conjugates” of
those from the first set. I.e., for the Grassmann variable υ we use υ∗ to denote its
“conjugate”. Furthermore, if Υ = (υjk) means a matrix of Grassmann variables,
then Υ+ is a matrix (υ∗kj). The d-dimensional vectors are identified with d ×
1 matrices.

The integrals without limits denote either an integration over Grassmann
variables or an integration over the whole space Cd or Rd. Let also dt∗dt (t =

(t1, . . . , td)
T ∈ Cd) denote the measure

d∏
j=1

dt̄jdtj on the space Cd. Similarly,

for the vectors with anti-commuting entries dτ+dτ =
d∏
j=1

dτ∗j dτj . Note that the
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space of matrices is a linear space over C. Thus the same notations are used for
matrices as well.

〈·, ·〉 denotes a standard scalar product on Cd. For matrices, 〈A,B〉 = trB∗A.
For sets of matrices, 〈A,B〉 =

∑
j〈Aj , Bj〉.(

m
p

)
×
(
m
s

)
matrices appear in the statement of Proposition 2.1. It is natural

to number rows and columns of such matrices by subsets of an m-element set.
To this end, set

Im,p′ = {α ∈ Zp
′ | 1 ≤ α1 < . . . < αp′ ≤ m}. (1.12)

If p′ = 0, we define Im,p′ as {∅}.
Throughout the paper, U(m), O(m), USp(m) denote the groups of unitary

m×m matrices, orthogonal m×m matrices, unitary symplectic 2m×2m matrices.
µ denotes a corresponding Haar measure. In addition, C, C1 denote various n-
independent constants which can be different in different formulas.

2. Integral representation for fm

In this section, we obtain a convenient integral representation for the corre-
lation function of the characteristic polynomials fm defined by (1.4).

Proposition 2.1. Let an ensemble Mn be defined by (1.1) and (1.2). Then
the mth correlation function of the characteristic polynomials fm defined by (1.4)
can be represented in the following form:

fm =
(n
π

)cm ∫
g(Q)e(n−cm)f(Q)dQ, (2.1)

where cm = 22m−1, Q = (Qj)
m
j=0, Qj = {Qp,s | p+ s = 2j, 0 ≤ p, s ≤ m}, Qp,s is

a complex
(
m
p

)
×
(
m
s

)
matrix, dQ =

∏
p+s is even
0≤p,s≤m

dQ∗p,sdQp,s and

f(Q) = −〈Q,Q〉+ log h(Q); (2.2)

g(Q) = (h(Q)cm + n−1/2pa(Q)) exp {−cm〈Q,Q〉} ;

h(Q) = Pf F + n−1/2h̃(Q2) + n−1pc(Q̂); (2.3)

F =


B2,0 0 −Z Q1

0 B∗0,2 −Q∗1 −Z∗
Z Q1 B∗2,0 0

−QT1 Z∗ 0 B0,2

 ; (2.4)

(B2,0)α1α2 = −q(2,0)
α∅ , (B0,2)α1α2 = −q(0,2)

∅α , α ∈ Im,2,

with pa(Q), pc(Q̂) and h̃(Q2) being certain polynomials specified in the proof
below, Q̂ containing all Qj except Q1, and Im,2 defined in (1.12).



On the Correlation Functions of the Characteristic Polynomials 97

Remark 2.2. Let us consider the transformations

F =


B2,0 0 −Z Q1

0 B∗0,2 −Q∗1 −Z∗
Z Q1 B∗2,0 0

−QT1 Z∗ 0 B0,2

 ∼

Z∗ 0 B0,2 −QT1
0 −Z Q1 B2,0

B∗0,2 −Q∗1 −Z∗ 0

Q1 B∗2,0 0 Z



∼


Z∗ 0 B0,2 −QT1
0 Z Q1 B2,0

−B∗0,2 −Q∗1 Z∗ 0

Q1 −B∗2,0 0 Z

 =:

(
Ž Q̌

−Q̌∗ Ž

)
=: F̌ , (2.5)

where Q̌ and Ž are the 2m × 2m matrices. Notice that det F̌ = detF , because
the first transformation in (2.5) is a permutation of lines and columns, and the
second one is a sign change. Moreover, 1

2 tr Q̌∗Q̌ = trQ∗0,2Q0,2 + trQ∗1,1Q1,1 +

trQ∗2,0Q2,0. Thus one can replace Q1 by Q̌ and Pf F by det1/2 F̌ in the assertion
of Proposition 2.1.

Remark 2.3. There is a well-known fact from the matrix theory that any
skew-symmetric matrix can be block-diagonalized with a unitary matrix. In our
case, this fact implies that Q̌ = U Λ̌UT , where

Λ̌ = diag {λjL}mj=1 , λj ≥ 0, L =

(
0 1
−1 0

)
; U ∈ U(2m).

Permuting lines and columns of Λ̌ and changing U in a proper way, one can
assume that Λ̌ has the form

Λ̌ =

(
0 Λ
−Λ 0

)
, Λ = diag {λj}mj=1 .

In order to perform an asymptotic analysis let us change the variables Q̌ = U Λ̌UT

in (2.1). Then the Jacobian is 2mπm
2

(
∏m−1
j=1 j!)

244(Λ2)
m∏
j=1

λj . We obtain

fm = Cncm
∫
D

44(Λ2)

m∏
j=1

λj ×
[
g0(Λ̌, Q̂) +

1√
n
gr(U Λ̌UT , Q̂)

]

× exp

{
(n− cm)

[
f0(Λ̌, Q̂) +

1√
n
fr(U Λ̌UT , Q̂)

]}
dµ(U)dΛdQ̂, (2.6)

where D = {(Λ, U, Q̂) | λj ≥ 0, j = 1, . . . ,m, U ∈ U(2m)}, µ is a Haar measure,

dΛ =
m∏
j=1

dλj and

f0(Q) = −〈Q,Q〉+ log h0(Q̌); (2.7)

g0(Q) = h0(Q̌)cm exp {−cm〈Q,Q〉} = ecmf0(Q);
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h0(Q̌) = det1/2

(
z0I2m Q̌

−Q̌∗ z0I2m

)
=

m∏
j=1

(z2
0 + λ2

j ); (2.8)

fr(Q) =
√
n(f(Q)− f0(Q)); (2.9)

gr(Q) =
√
n(g(Q)− g0(Q)).

Notice that f0(U Λ̌UT , Q̂) = f0(Λ̌, Q̂) and the same is for g0.

Remark 2.4. In the special case m = 1, we have

f1(z) =
n

π

∫
exp

{
n(− |q|2 + log(|z|2 + |q|2))

}
dq̄dq.

Changing the variables to polar coordinates and performing a simple Laplace
integration, we obtain

f1(z) = 2n

+∞∫
0

r exp
{
n(−r2 + log(|z|2 + r2))

}
dr

=
√

2πn en(|z|2−1)(1 + o(1)). (2.10)

Remark 2.5. In the real Gaussian case, representations (2.1) and (2.6) become
much more simple and have the form

fm =
(n
π

)2m2−m
∫
enf(Q̌)dQ̌∗dQ̌

= Cn2m2−m
∫
Rm+

∫
U(m)

44(Λ2)
m∏
j=1

λj × enf(UΛ̌UT )dµ(U)dΛ, (2.11)

where

f(Q̌) = −1

2
tr Q̌∗Q̌+

1

2
log det F̌ (2.12)

and Q̌, F̌ are defined in (2.5).

2.1. Proof of Proposition 2.1. The proof is strongly relied on the SUSY
techniques. A reader who is not familiar with Grassmann variables can find all
the necessary facts in [15] or [16]. For more serious introduction to SUSY, see [4].

The key formulas of the subsection are the well-known Gaussian integration
formulas∫

Cn

exp {−t∗At− t∗h2 − h∗1t} dt∗dt = πn det−1A exp{h∗1A−1h2}, (2.13)

∫
Rn

exp

{
−1

2
tTAt

}
dt = (2π)n/2 det−1/2A, (2.14)



On the Correlation Functions of the Characteristic Polynomials 99

valid for any positive definite matrix A and even Grassmann variable vectors (i.e.,
vectors whose components are sums of products of even number of Grassmann
variables) h1, h2, and its Grassmann analogs∫

exp
{
−τ+Aτ − τ+υ2 − υ+

1 τ
}
dτ+dτ = detA exp{υ+

1 A
−1υ2}, (2.15)∫

exp

{
−1

2
τTAτ

}
dτ = Pf A. (2.16)

(2.15) is valid for an arbitrary complex matrix A and odd Grassmann variable
vectors (i.e., vectors whose components are sums of products of odd number
of Grassmann variables) υ+

1 , υ2, whereas (2.16) is valid for any complex skew-
symmetric matrix A. Rewrite the expression (1.4) for fm using (2.15) and (1.1),

fm = E

{∫
exp

{
−

m∑
j=1

φ+
j

(
1√
n
X − zj

)
φj

−
m∑
j=1

θ+
j

(
1√
n
X − zj

)∗
θj

}
dΦdΘ

}
,

where φj , θj , j = 1, . . . ,m are n-dimensional vectors whose components are φkj

and θkj respectively, dΦ =
m∏
j=1

dφ+
j dφj and dΘ =

m∏
j=1

dθ+
j dθj . The terms in the

exponent can be rearranged as follows:

−
m∑
j=1

φ+
j Xφj = − tr Φ+XΦ = tr ΦΦ+X =

n∑
k,l=1

(ΦΦ+)lkxkl,

−
m∑
j=1

θ+
j X

∗θj = − tr Θ+X∗Θ = tr ΘΘ+X∗ =
n∑

k,l=1

(ΘΘ+)klx̄kl,

m∑
j=1

φ+
j zjφj =

m∑
j=1

n∑
k=1

φ∗kjzjφkj =
n∑
k=1

m∑
j=1

φ∗kjzjφkj =
n∑
k=1

ϕ+
k Zϕk,

m∑
j=1

θ+
j z̄jθj =

m∑
j=1

n∑
k=1

θ∗kj z̄jθkj =

n∑
k=1

m∑
j=1

θ∗kj z̄jθkj =

n∑
k=1

ϑ+
k Z
∗ϑk,

where Θ and Φ are matrices composed of columns θ1, . . . ,θm and φ1, . . . ,φm,
respectively, ϕk = (ΦT )k, ϑk = (ΘT )k, Z is defined in (1.5). Hence,

fm = E

{∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+
1√
n

n∑
k,l=1

(ΦΦ+)lkxkl +
1√
n

n∑
k,l=1

(ΘΘ+)klx̄kl

}
dΦdΘ

}
. (2.17)

Let us introduce a notation for a kind of the “Laplace–Fourier transform”

ψ (t1, t2) := E
{
et1x11+t2x̄11

}
.
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Then the expectation in (2.17) can be written in the form

fm =

∫ n∏
k,l=1

ψ

(
1√
n

(ΦΦ+)lk,
1√
n

(ΘΘ+)kl

)

× exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

}
dΦdΘ

=

∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+
n∑

k,l=1

logψ

(
1√
n

(ΦΦ+)lk,
1√
n

(ΘΘ+)kl

)}
dΦdΘ.

Expansion of logψ into series gives us

fm =

∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+

n∑
k,l=1

m∑
p,s=0

κp,s
p!s!

1

n(p+s)/2

(
(ΦΦ+)lk

)p (
(ΘΘ+)kl

)s}
dΦdΘ, (2.18)

with

κp,s =
∂p+s

∂pt1∂st2
logψ (t1, t2)

∣∣∣∣
t1=t2=0

. (2.19)

In particular,

κ0,0 = 0;

κ1,0 = κ0,1 = E{x11} = 0;

κ2,0 = κ0,2 = E{x2
11} −

2
E{x11} = E{x2

11};
κ1,1 = E{|x11|2} − |E{x11}|2 = 1. (2.20)

Let us transform the terms in the exponent again

n∑
k,l=1

(
(ΦΦ+)lk

)p (
(ΘΘ+)kl

)s
=

n∑
k,l=1

(
m∑
j=1

φljφ
∗
kj

)p( m∑
j=1

θkjθ
∗
lj

)s

= p!s!

n∑
k,l=1

∑
α∈Im,p
β∈Im,s

p∏
q=1

φlαqφ
∗
kαq

s∏
r=1

θkβrθ
∗
lβr

= (−1)p
2
p!s!

n∑
k,l=1

∑
α∈Im,p
β∈Im,s

1∏
r=s

θkβr

1∏
q=p

φ∗kαq

p∏
q=1

φlαq

s∏
r=1

θ∗lβr
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= p!s!
∑

α∈Im,p
β∈Im,s

(
n∑
k=1

(−1)p
1∏
r=s

θkβr

1∏
q=p

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)
, (2.21)

where Im,p′ is defined in (1.12).

At this point the Hubbard–Stratonovich transformation is applied. The trans-
formation is an employment of (2.13) or (2.15) in the reverse direction. It yields
for even p+ s,

exp

{
κp,sn

−(p+s)/2

(
n∑
k=1

(−1)p
1∏
r=s

θkβr

1∏
q=p

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)}

=
n

π

∫
exp

{
−n−

p+s−2
4

n∑
k=1

ỹ
(k,p,s)
βα q

(p,s)
αβ

− n−
p+s−2

4

n∑
k=1

q̄
(p,s)
αβ y

(k,p,s)
αβ − n

∣∣∣q(p,s)
αβ

∣∣∣2}dq̄(p,s)
αβ dq

(p,s)
αβ , (2.22)

where

ỹ
(k,p,s)
βα =

√
κp,s(−1)p

1∏
r=s

θkβr

1∏
q=p

φ∗kαq ; (2.23)

y
(k,p,s)
αβ =

√
κp,s

p∏
q=1

φkαq

s∏
r=1

θ∗kβr . (2.24)

Here and below we take a branch of the square root such that its argument is
in [0, π). Similarly, for odd p+ s we have

exp

{
κp,sn

−(p+s)/2

(
n∑
k=1

(−1)p
s∏
r=1

θkβr

p∏
q=1

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)}

=

∫
exp

{
− n−

p+s
4

n∑
k=1

ỹ
(k,p,s)
βα ξ

(p,s)
αβ − n−

p+s
4

n∑
k=1

(
ξ

(p,s)
αβ

)∗
y

(k,p,s)
αβ

−
(
ξ

(p,s)
αβ

)∗
ξ

(p,s)
αβ

}
d
(
ξ

(p,s)
αβ

)∗
dξ

(p,s)
αβ . (2.25)

Then the combination of (2.18), (2.21), (2.22) and (2.25) gives us

fm =
(n
π

)cm ∫ n∏
k=1

jk
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s

×
∏

p+s is even
0≤p,s≤m

e−n trQ∗p,sQp,sdQ∗p,sdQp,s (2.26)
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where

jk =

∫
exp

{
bk,2 + n−1/2bk,4 + n−3/4p(1)

a (Ξ,Φ,Θ)

+ n−1p(1)
c (Q̂,Φ,Θ)

}
× dϕ+

k dϕkdϑ
+
k dϑk,

(2.27)

bk,2 = −
∑
p+s=2

(
tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
+ϕ+

k Zϕk + ϑ+
k Z
∗ϑk,

bk,4 = −
∑
p+s=4

(
tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
, (2.28)

p(1)
a (Ξ,Φ,Θ) = −

m∑
j=2

n−(j−2)/2
∑

p+s=2j−1

(
tr Ỹk,p,sΞp,s + tr Ξ+

p,sYk,p,s

)
,

p(1)
c (Q̂,Φ,Θ) = −

m∑
j=3

n−(j−3)/2
∑

p+s=2j

(
tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
.

In the formulas above, Ξp,s, Qp,s, Ỹk,p,s and Yk,p,s are matrices whose entries are

ξ
(p,s)
αβ , q

(p,s)
αβ , ỹ

(k,p,s)
βα and y

(k,p,s)
αβ , respectively. The rows and columns are indexed

by the elements of the set Im,p for corresponding p (or s) in lexicographical order.

Note also that p
(1)
a and p

(1)
c are the first degree homogeneous polynomials of the

entries of Ξ and Q̂, respectively, where Q̂ contains all the Qj except Q1. One

more thing we need is that all the monomials of p
(1)
a have odd degree with respect

to ϕk and ϑk, and all the monomials of p
(1)
c have even degree with respect to ϕk

and ϑk.

Fortunately, the integral in (2.26) over Φ and Θ factorizes. Therefore the
integration can be performed over ϕk and ϑk separately for every k. Lemma 2.6
provides a corresponding result.

Lemma 2.6. Let jk be defined by (2.27). Then

jk = Pf F + n−1/2h̃(Q2) + n−1pc(Q̂) + n−3/2p(2)
a (Ξ,Q), (2.29)

where F is defined in (2.4),

h̃(Q2) =

∫
bk,4e

bk,2dϕ+
k dϕkdϑ

+
k dϑk, (2.30)

pc(Q̂) and p
(2)
a (Ξ,Q) are polynomials such that

(i) pc(0) = 0,

(ii) every monomial of p
(2)
a has at least second degree with respect to Ξ.

Proof. The integral jk is computed by the expansion of the exponent into
series. We start with
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jk =

∫ (
1 +

∑
1≤k≤4m/3

n−3k/4(p(1)
a (Ξ,Φ,Θ))k

)

× ebk,2+n−1/2bk,4+n−1p
(1)
c (Q̂,Φ,Θ)dϕ+

k dϕkdϑ
+
k dϑk, (2.31)

where the terms of degree higher than 4m with respect to ϕk and ϑk van-
ish, because the square of any anti-commuting variable is zero. The mono-
mials of odd degree with respect to ϕk and ϑk also vanish after integra-
tion. Indeed, for every odd degree homogeneous polynomial p̃ the expansion of

p̃ (ϕk,ϑk) e
bk,2+n−1/2bk,4+n−1pc(Q̂,Φ,Θ) into series gives us only odd degree terms.

Whereas the number of Grassmann variables is even, there are no top degree
monomials and the integral is zero. Thus (2.31) simplifies to

jk =

∫ (
1 + n−3/2p(3)

a (Ξ,Φ,Θ)
)
ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)

× dϕ+
k dϕkdϑ

+
k dϑk, (2.32)

where p
(3)
a (Ξ,Φ,Θ) is a polynomial and its every monomial has a degree at least

2 with respect to Ξ and at least 2 with respect to ϕk and ϑk. Put

p(2)
a (Ξ,Q) :=

∫
p(3)
a (Ξ,Φ,Θ)ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)

× dϕ+
k dϕkdϑ

+
k dϑk. (2.33)

Note that p
(2)
a (Ξ,Q) satisfies condition (ii). Substitution of (2.33) into (2.32)

yields

jk =

∫
ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)dϕ+

k dϕkdϑ
+
k dϑk + n−3/2p(2)

a (Ξ,Q).

Further expansion implies

jk =

∫ (
1 + n−1/2bk,4 + n−1p(2)

c (Q̂,Φ,Θ)
)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk

+ n−3/2p(2)
a (Ξ,Q),

where p
(2)
c (Q̂,Φ,Θ) is again a polynomial such that p

(2)
c (0,Φ,Θ) = 0. Similarly

to the above, we obtain

jk =

∫ (
1 + n−1/2bk,4

)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk + n−1pc(Q̂)

+ n−3/2p(2)
a (Ξ,Q), (2.34)

where pc(Q̂) satisfies condition (i).

Recalling the definition of y
(k,p,s)
αβ (2.23) and the values of κp,s (2.20), one can

render bk,2 in the form

bk,2 = −1

2
ρTk Fρk, (2.35)
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where F is defined in (2.4) and

ρk =


(ϕ+

k )T

(ϑ+
k )T

ϕk
ϑk

 . (2.36)

Then (2.34) and (2.16) imply the assertion of the lemma.

A substitution of (2.29) into (2.26) gives us

fm =
(n
π

)cm ∫
(h(Q) + n−3/2p(2)

a (Ξ,Q))n
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s

×
∏

p+s is even
0≤p,s≤m

e−n trQ∗p,sQp,sdQ∗p,sdQp,s,

where h(Q) is defined in (2.3). Further,

(h(Q) + n−3/2p(2)
a (Ξ,Q))n =

cm∑
k=0

(
n

k

)
n−3k/2h(Q)n−k(p(2)

a (Ξ,Q))k

because there are 2cm anti-commuting variables and every monomial of p
(2)
a has

at least second degree with respect to Ξ. Hence,

fm =
(n
π

)cm ∫
(h(Q)cm + n−1/2p(3)

a (Ξ,Q))

×
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s × enf(Q)−cm log h(Q)dQ, (2.37)

where p
(3)
a is a polynomial and f(Q) is defined in (2.2). Taking into account

(2.15) and the definition of an integral over anti-commuting variables, one can
perform the integration over Ξ in (2.37) and obtain (2.1).

3. Asymptotic analysis

The goal of the section is to study the asymptotic behavior of the integral
representation (2.6). To this end, the steepest descent method is applied. As
usual, the hardest step is to choose the stationary points of f(Q) and an N -
dimensional (real) manifold M∗ ⊂ CN such that for any chosen stationary point
Q∗ ∈M∗

<f(Q) < <f(Q∗), ∀Q ∈M∗,

where Q is not chosen. Note that N is equal to the number of real variables of
the integration, i.e., in our case N = 22m.
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The present proof proceeds by a standard scheme for the case when the func-
tion f(Q) has the form

f(Q) = f0(Q) + n−1/2fr(Q),

where f0(Q) does not depend on n, whereas fr(Q) may depend on n. We choose
the stationary points of f0(Q) of the form Q̌ = U Λ̌0U

T , Q̂ = 0, where

Λ̌0 =

(
0 Λ0

−Λ0 0

)
=

(
0 λ0Im

−λ0Im 0

)
,

λ0 is a fixed positive number and U varies in U(2m). Then the steepest descent
method is applied to the integral over Λ and Q̂. In the process U is considered
as a parameter and all the estimates are uniform in U . As soon as the domain of
integration is restricted by a small neighborhood, we recall about the integration
over U . After several changes of the variables the integral is reduced to the form
(1.9).

We start with the analysis of f0.

Lemma 3.1. Let the function f0 : R22m → [−∞,+∞) be defined by (2.7).
Then f0(Λ̌, Q̂) attains its global maximum value only at the point

λ1 = · · · = λm = λ0, Q̂ = 0,

where λ0 =
√

1− |z0|2. Moreover, the matrix of the second order derivatives of

f0 w.r.t. Λ and Q̂ at this point is negative definite.

Proof. It is evident from (2.7) and (2.8) that f0(Λ̌, Q̂) has the form

f0(Λ̌, Q̂) =
m∑
j=1

f∗(λj)− 〈Q0,Q0〉 −
m∑
j=2

〈Qj ,Qj〉, (3.1)

where
f∗(λ) = −λ2 + log(|z0|2 + λ2).

Since f ′∗(λ) = 0 iff λ = λ0 and lim
λ→∞

f∗(λ) = −∞, f∗(λ) attains its global maxi-

mum value only at λ = λ0. Furthermore, f ′′∗ (λ0) = −4λ2
0. These facts and (3.1)

immediately imply the assertion of the lemma.

To simplify the reading, the remaining steps are first explained in the case
when the matrices Mn are from GinOE.

3.1. Gaussian case. Now we proceed to the integral estimates. In a stan-
dard way the integration domain in (2.11) can be restricted as follows:

fm = Cn2m2−m
∫
Σr

44(Λ2)
m∏
j=1

λj × enf(UΛ̌UT )dµ(U)dΛ +O(e−nr/2),



106 Ievgenii Afanasiev

where
Σr = {(Λ, U) | ‖Λ‖ ≤ r} .

The next step is to restrict the integration domain by

Ωn =

{
(Λ, U) | ‖Λ− Λ0‖ ≤

log n√
n

}
, (3.2)

where Λ0 = λ0Im. To this end we need the estimate of <f given by the following
lemmas.

Lemma 3.2. Let Λ̃ be an m × m diagonal matrix such that ‖Λ̃‖ ≤ log n.
Then, uniformly in U ,

f(U(Λ̌0 + n−1/2 ˇ̃
Λ)UT ) = −mλ2

0 + n−1/2z0 tr Ž + n−1 tr(ŽU ŽRU )/2

− n−1 tr(2λ0M+ z0ŽU + z0ŽRU )2/4

+O
(
n−3/2 log3 n

)
,

(3.3)

where Ž is defined in (1.11), ŽW = W ∗ŽW , AR is a dual matrix defined in
(1.8), M = diag{Λ̃, Λ̃}.

Proof. If Q̌ = U(Λ̌0 + n−1/2 ˇ̃
Λ)UT , then F̌ has the form

F̌ =

(
U 0

0 U

)(
F̌0 +

1√
n
F̌1

)(
U∗ 0
0 UT

)
,

where

F̌0 =

(
z0I2m Λ̌0

Λ̌0 z0I2m

)
, F̌1 =

(
ŽU

ˇ̃
Λ

ˇ̃
Λ ŽTU

)
. (3.4)

Taking into account that

det F̌0 =

[
det

(
z0 λ0

−λ0 z0

)
det

(
z0 −λ0

λ0 z0

)]m
= 1,

one gets

log det F̌ = tr log(1 + n−1/2F̌−1
0 F̌1)

=
1√
n

tr F̌−1
0 F̌1 −

1

2n
tr(F̌−1

0 F̌1)2 +O

(
log3 n√
n3

)
(3.5)

uniformly in U . Moreover,

F̌−1
0 F̌1 =

(
z0ŽU + λ0M z0

ˇ̃
Λ− Λ̌0ŽTU

−Λ̌0ŽU + z0
ˇ̃
Λ λ0M+ z0ŽTU

)
. (3.6)

Combining (3.5), (3.6), (2.12) and the fact that Λ̌0
ˇ̃
Λ =

ˇ̃
ΛΛ̌0 = −λ0M, we get

f(U(Λ̌0 + n−1/2 ˇ̃
Λ)UT )
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=
1

2
tr
[
Λ̌2

0 − 2n−1/2λ0M− n−1M2 + n−1/2(2λ0M+ z0ŽU + z0ŽTU )

− n−1
{

(λ2
0 − z2

0)M2 + 2z0λ0ŽUM+ 2z0λ0ŽTUM

+
1

2
z2

0

(
Ž2
U +

(
ŽTU
)2)

+ Λ̌0ŽU Λ̌0ŽTU
}]

+O
(
n−3/2 log3 n

)
. (3.7)

Note that

tr ŽTU = tr ŽU = tr Ž,

tr ŽTUM = tr
((
ŽTUM

)T)R
= tr ŽRUM,

tr
(
ŽTU
)2

= tr
(
ŽRU
)2
,

tr Λ̌0ŽU Λ̌0ŽTU = λ2
0 tr ŽUJŽTUJ = −λ2

0 tr ŽU ŽRU .

Hence the expansion (3.7) yields (3.3).

Lemma 3.3. Let f̃(Q̌) = f(Q̌)− f(Λ̌0). Then, for sufficiently large n,

max
logn√
n
≤‖Λ−Λ0‖≤r

<f̃(U Λ̌UT ) ≤ −C log2 n

n

uniformly in U .

Proof. First, let us check that the first and the second derivatives of fr are
bounded in the δ-neighborhood of Λ0, where fr is defined in (2.9) and δ is n-
independent. Indeed, since h and h0 are polynomials and h⇒ h0 on compacts,∣∣∣∣ 1√

n

∂<fr
∂λj

∣∣∣∣ ≤ ∣∣∣∣ 1√
n

∂fr
∂λj

∣∣∣∣ =

∣∣∣∣∂(f − f0)

∂λj

∣∣∣∣ =

∣∣∣∣∂(log h− log h0)

∂λj

∣∣∣∣
≤
∣∣∣∣ 1

h0

∂h0

∂λj
− 1

h

∂h

∂λj

∣∣∣∣ ≤ C√
n
.

For every real diagonal matrix E of unit norm and for logn√
n
≤ t ≤ δ, we have

d

dt
<f̃(U(Λ̌0 + tĚ)UT ) = 〈∇Λf0(U(Λ̌0 + tĚ)UT ), v(E)〉

+ n−1/2〈∇Λ<fr(U(Λ̌0 + tĚ)UT ), v(E)〉
= 〈∇Λf0(Λ̌0 + tĚ), v(E)〉+O(n−1/2),

where Ě = diag{E,E}, v(E) denotes a vector with components ej and 〈·, ·〉 is a
standard real scalar product. Expanding the scalar product by the Taylor formula
and considering that ∇Λf0(Λ̌0) = 0, we obtain

d

dt
<f̃(U(Λ̌0 + tĚ)UT ) = t〈f ′′0 (Λ̌0)v(E), v(E)〉+ r1 +O(n−1/2),
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where f ′′0 is a matrix of second order derivatives of f0 with respect to Λ and |r1| ≤
Ct2. f ′′0 (Λ̌0) is negative definite according to Lemma 3.1. Hence d

dt<f̃(U(Λ̌0 +
tĚ)UT ) is negative and

max
logn√
n
≤‖Λ−Λ0‖≤δ

<f̃(U Λ̌UT ) = max
‖Λ−Λ0‖= logn√

n

<f̃(U Λ̌UT )

≤ f(U Λ̌0U
T )− C log2 n

n
− f(Λ̌0). (3.8)

Notice that fr is bounded from above uniformly in n. This fact and Lemma 3.1
imply that δ in (3.8) can be replaced by r,

max
logn√
n
≤‖Λ−Λ0‖≤r

<f̃(U Λ̌UT ) ≤ f(U Λ̌0U
T )− f(Λ̌0)− C log2 n

n
.

It remains to deduce from Lemma 3.2 that f(U Λ̌0U
T ) − f(Λ0) = O(n−1) uni-

formly in U .

Lemma 3.3 yields

fm = Cn2m2−menf(Λ̌0)

(∫
Ωn

44(Λ2)
m∏
j=1

λj × enf̃(UΛ̌UT )dµ(U)dΛ +O(e−C1 log2 n)

)
,

where Ωn is defined in (3.2). Changing the variables Λ = Λ0+ 1√
n

Λ̃ and expanding

f according to Lemma 3.2, we obtain

fm = Ckn

∫
√
nΩn

44(Λ̃)dΛ̃dµ(U)(1 + o(1)) (3.9)

× exp

{
−1

4
tr(2λ0M+ z0ŽU + z0ŽRU )2 +

1

2
tr ŽU ŽRU

}
, (3.10)

where
kn = nm

2−m/2e−mnλ
2
0+
√
nz0 tr Ž . (3.11)

Let us do several changes of the variables. The first one is U = OĎS∗, where O is
a real orthogonal matrix, S is a unitary symplectic matrix and Ď = diag{D,D},
D = diag{eiηj}mj=1. Taking into account that dµ(U) changes to Cdµ(O)dµ(S)dη

with dη = 42(D4)
∏m
j=1 e

−(4m−4)iηjdηj , we get

fm = Ckn

∫
Rm

44(Λ̃)dΛ̃

∫
[0,π]m

dη

∫
O(2m)

dµ(O)

∫
USp(m)

dµ(S)(1 + o(1))

× exp

{
−1

4
tr(2λ0M+ S∗(z0ŽOĎ + z0ŽROĎ)S)2

+
1

2
tr ŽOĎ2ORŽR

(
OĎ2OR

)∗}
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= Ckn

∫
Rm

44(Λ̃)dΛ̃

∫
[0,π]m

dη

∫
O(2m)

dµ(O)

∫
USp(m)

dµ(S)(1 + o(1))

× exp

{
−1

4
tr(2λ0SMS∗ + z0ŽOĎ + z0ŽROĎ)2 +

1

2
tr ŽV ŽRV ∗

}
,

where V = OĎ2OR. The second change of the variables is H = SMS∗. Then
H runs over Hermitian self-dual matrices, and the Jacobian of the change is
C4−4(Λ̃). Thus,

fm = Ckn

∫
H=H∗=HR

dH

∫
[0,π]m

dη

∫
O(2m)

dµ(O)(1 + o(1))

× exp

{
−1

4
tr(2λ0H + z0ŽOĎ + z0ŽROĎ)2 +

1

2
tr ŽV ŽRV ∗

}
,

where

dH =

m∏
j=1

d(H)jj
∏

j<k≤m
d<(H)jkd=(H)jkd<(H)j,k+md=(H)j,k+m.

The Gaussian integration over H implies

fm = Ckn

∫
[0,π]m

dη

∫
O(2m)

dµ(O) exp

{
1

2
tr ŽV ŽRV ∗

}
(1 + o(1)). (3.12)

Finally, the last change of the variables V = OĎ2OR brings the integration do-
main to the set of all unitary self-dual 2m×2m matrices. dηdµ(O) transforms to
the measure Cdµs(V ) which corresponds to the differential form (1.10). There-
fore,

fm = Ckn

∫
V=V R∈U(2m)

exp

{
1

2
tr ŽV ŽRV ∗

}
dµs(V )(1 + o(1)). (3.13)

(3.13) and (2.10) yield assertion (i) of Theorem 1.1.
In order to prove assertion (ii), let us compute the integral (3.13) for m = 2.

Lemma 3.4. Let A = diag{a1, a2, a3, a4} be an arbitrary diagonal matrix.
Then ∫

V=V R∈U(4)

exp

{
1

2
trAV ARV ∗

}
dµs(V ) = C

Pf((aj − ak)eajak)4
j,k=1

4(A)
. (3.14)

Proof. Observe that the left-hand side of (3.14) is analytic in a1, a2, a3, a4.
Thus, it is sufficient to evaluate series of the integral at A = 0. A straightforward
computation gives us

1

2
trAV ARV ∗ = a1a3 + a2a4− (a1− a2)(a3− a4) |v12|2− (a2− a3)(a4− a1) |v14|2 .
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Let us define the number sequence {cjk} by the equality

e−b0
∫

V=V R∈U(4)

exp

{
1

2
trAV ARV ∗

}
dµs(V ) =

∞∑
j,k=0

cjkb
j
1b
k
2, (3.15)

where

b0 = a1a3 + a2a4,

b1 = (a1 − a2)(a3 − a4),

b2 = (a2 − a3)(a4 − a1).

(3.16)

Further,

cjk =

∫
V=V R∈U(4)

(−1)j+k

j!k!
|v12|2j |v14|2k dµs(V )

=

∫
V=V R∈U(4)

(−1)k

j!k!
× vj12v

j
21

Pfj V J
× vk14v

k
32

Pfk V J
dµs(V ). (3.17)

In order to compute the last integral, the following bosonization formula (see [27,
Theorem 4.11]) is used:∫

f

((
Υ+Υ Υ+ (Υ+)

T

− (Υ)T Υ − (Υ)T (Υ+)
T

))
dΥ+dΥ

= (2π)qn2q
vol(On)

vol(On+2q)

∫
V=V R∈U(2q)

f(V ) det−n/2 V dµs(V ), (3.18)

where Υ is an n×q matrix with anti-commuting entries, f is an analytic function
and vol stands for volume. Let us apply (3.18) to (3.17) for n = j + k and q = 2.

Taking into account that vol(On) = 2nπ
n(n+1)

4∏n
p=1 Γ(p/2)

, we obtain

cjk = C
(−1)k

j!k!(j + k + 2)!(j + k)!

×
∫ (j+k∑

l=1

υ∗l1υl2

)j(j+k∑
l=1

υ∗l2υl1

)j(j+k∑
l=1

υ∗l1υ
∗
l2

)k(
−
j+k∑
l=1

υl1υl2

)k
dΥ+dΥ,

where C depends neither on j nor on k. Doing some combinatorics, it is easy to
see that the integrand equals

(−1)j(j + k)!j!k!

j+k∏
l=1

υ∗l1υl1υ
∗
l2υl2.

Hence,

cjk = C
(−1)j+k

(j + k + 2)!
.
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Summing over j and k, we get

∞∑
j,k=0

cjkb
j
1b
k
2 = C

∞∑
l=0

(−1)l

(l + 2)!

∑
j+k=l

bj1b
k
2

= C
∞∑
l=0

(−1)l

(l + 2)!

bl+1
1 − bl+1

2

b1 − b2
= C

e−b1−1
b1
− e−b2−1

b2

b1 − b2
. (3.19)

Note that b1 − b2 = (a1 − a3)(a2 − a4). Thus, (3.15), (3.16) and (3.19) imply∫
V=V R
V ∈U(4)

exp

{
1

2
trAV ARV ∗

}
dµs(V ) = Ceb0

b2e
−b1 − b1e−b2 + (b1 − b2)

b1b2(b1 − b2)

=
C

−4(A)

[
(a2 − a3)(a4 − a1)ea1a4+a2a3

− (a1 − a2)(a3 − a4)ea1a2+a3a4

+ (a1 − a3)(a2 − a4)ea1a3+a2a4
]
.

To finish the proof, it remains to observe that the expression in the brackets is
exactly −Pf((aj − ak)eajak)4

j,k=1.

Applying the lemma to (3.13), one obtains

f2 = Ckn

Pf

(
(ζj − ζk)eζjζk (ζj − ζ̄k)eζj ζ̄k
(ζ̄j − ζk)eζ̄jζk (ζ̄j − ζ̄k)eζ̄j ζ̄k

)2

j,k=1

4(ζ1, ζ2, ζ̄1, ζ̄2)
(1 + o(1)),

which in combination with (2.10) yields assertion (ii) of Theorem 1.1.

3.2. General case. In the general case the proof proceeds by the same
scheme as in the Gaussian case. In this subsection, we focus on the crucial
distinctions from the Gaussian case and refine the corresponding assertions from
the previous subsection.

In order to formulate the refinement of Lemma 3.2, let us introduce some new
notations. Set

‖Q̂‖ =

√
〈Q̂, Q̂〉.

Since x11 is real, κp,s depends only on p+ s (see (2.19)). We denote the common
value of κ4−s,s by κ4. It is also convenient to change indices of the entries of Q2.
For any δ ∈ I2m,4, determine a number s such that δs ≤ m < δs+1. Then put

q̃
(2)
δ = q̃

(4−s,s)
αβ , where

α = (δs+1 −m, . . . , δ4 −m);

β = (δ1, . . . , δs).
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I ′2m,4 denotes a set of such indices δ that s = 2 and α = β. ∧4B is the fourth
exterior power of a linear operator B (see [41] for definition and properties of an
exterior power of a linear operator).

At the point we are ready to generalize Lemma 3.2.

Lemma 3.5. Let ‖Λ̃‖+
∥∥ ̂̃Q∥∥ ≤ log n. Then, uniformly in U and V ,

f(U(Λ̌0 + n−1/2 ˇ̃
Λ)UT , n−1/2 ̂̃Q)

= −mλ2
0 + n−1/2z0 tr Ž + n−1 tr(ŽU ŽRU )/2

− n−1 tr(2λ0M+ z0ŽU + z0ŽRU )2/4

+ n−1λ2
0

√
κ4

∑
δ∈I2m,4

∑
γ∈I′2m,4

((∧4U)δγ q̃
(2)
δ + ¯̃q

(2)
δ (∧4UT )γδ)

− n−1〈 ̂̃Q, ̂̃Q〉+O
(
n−3/2 log3 n

)
, (3.20)

where we keep the notations of Lemma 3.2. All new notations are described just
before this lemma.

Proof. Differently from the Gaussian case, f has an additional term 〈Q̂, Q̂〉,
and an additional term n−1/2h̃(Q2) + n−1pc(Q̂) under the logarithm (cf. (2.2)
and (2.12)), where h̃ and pc are defined in the assertion of Lemma 2.6. The
contribution of the term 〈Q̂, Q̂〉 to the expansion (3.20) is evident. Furthermore,

n−1pc(n
−1/2 ̂̃Q) = O

(
n−3/2 log3 n

)
because pc is a polynomial with zero constant

term. Hence, it remains to determine the contribution of the term n−1/2h̃(Q2).
In order to simplify notations, let us omit the index k in (2.30). Thus, now

ϕ and ϑ denote the vectors φ1
...
φm

 and

 θ1
...
θm

 ,

respectively. Then (2.30) is written as

h̃(Q2) =

∫
b4e

b2dϕ+dϕdϑ+dϑ,

where b2 has the form (2.35) and b4 is defined in (2.28). Therefore,

n−1/2h̃(n−1/2Q̃2) = n−1h̃(Q̃2) = − 1

n

∫
dϕ+dϕdϑ+dϑ e−

1
2
ρTFρ

×
∑
p+s=4

(
tr Ỹp,sQ̃p,s + tr Q̃∗p,sYp,s

)
, (3.21)

where ρ is defined in (2.36), F is defined in (2.4), Ỹp,s and Yp,s are defined by
(2.23). In order to make further computation more clear, we introduce some more
notations. Put

ρ1 =

(
ϑ

(ϕ+)
T

)
, ρ+

1 =
(
ϑ+ −ϕT

)
. (3.22)
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Let us change the variables ρ̃1 = UTρ1, ρ̃+
1 = ρ+

1 U . We have

κ
−1/2
4 y

(p,s)
αβ =

p∏
q=1

φαq

s∏
r=1

θ∗βr = (−1)p
p∏
q=1

(
ρ+

1

)
m+αq

s∏
r=1

(
ρ+

1

)
βr

= (−1)p(−1)
p(p−1)

2
+
s(s−1)

2

1∏
r=p+s

(
ρ̃+

1 U
T
)
δr
,

where
δ = (β1, . . . , βs,m+ α1, . . . ,m+ αp) ∈ I2m,4.

Taking into account that p+ s = 4 and

p+
p(p− 1)

2
+
s(s− 1)

2
= p(p− 3) + 6

is even, we get

κ
−1/2
4 y

(p,s)
αβ =

∑
γ∈([1,2m]∩Z)4

1∏
r=4

(
ρ̃+

1

)
γr
uδrγr

=
∑

γ∈I2m,4

det
{
UT
}
γδ

1∏
r=4

(
ρ̃+

1

)
γr

=
∑

γ∈I2m,4

(∧4UT )γδ

1∏
r=4

(
ρ̃+

1

)
γr
, (3.23)

where ujk = (U)jk and
{
UT
}
γδ

is a submatrix of UT constructed as an intersec-
tion of rows γ1, . . . , γ4 with columns δ1, . . . , δ4. Similarly,

κ
−1/2
4 ỹ

(p,s)
βα =

∑
γ∈I2m,4

(∧4U)δγ

4∏
r=1

(ρ̃1)γr . (3.24)

Besides,
ρTFρ = −ρ+

∗ F̌ρ∗ = −ρ̃+
∗ F̌0ρ̃∗ +O(n−1/2 log n), (3.25)

where F̌0 is defined in (3.4) and

ρ∗ =

((
ρ+

1

)T
ρ1

)
, ρ+

∗ =
(
−ρT1 ρ+

1

)
, ρ̃ =

((
ρ̃+

1

)T
ρ̃1

)
, ρ̃+

∗ =
(
−ρ̃T1 ρ̃+

1

)
.

The “measure” changes as follows:

dϕ+dϕdϑ+dϑ = det−1 UT det−1 Udρ̃+
1 dρ̃1 = dρ̃+

1 dρ̃1. (3.26)

Eventually, substitution of (3.23)–(3.26) into (3.21) yields

n−1h̃(Q̃2) = − 1

n

∑
δ∈I2m,4

∑
γ∈I2m,4

√
κ4

∫
e

1
2
ρ̃+∗ F̌0ρ̃∗dρ̃+

1 dρ̃1
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×
(

(∧4U)δγ

4∏
r=1

(ρ̃1)γr q̃
(2)
δ + ¯̃q

(2)
δ (∧4UT )γδ

1∏
r=4

(
ρ̃+

1

)
γr

)
+O

(
n−3/2 log3 n

)
(3.27)

uniformly in U .
Let us denote the components of ρ1 and ρ+

1 in the same way as in (3.22)

but with tildes. Then the integration in (3.27) can be performed over φ̃j , θ̃j
separately for every j due to the structure of F̌0. Thus, it remains to compute
the integral∫ 4∏

r=1

(ρ̃1)γr exp
{
z0θ̃j θ̃

∗
j + λ0θ̃jφ̃

∗
j + z0φ̃jφ̃

∗
j − λ0φ̃j θ̃

∗
j

}
dφ̃∗jdφ̃jdθ̃

∗
jdθ̃j

and the same one with ρ+
1 instead of ρ1. Furthermore, expanding the expo-

nent into series, one can observe that the integral is non-zero only if γ ∈ I ′2m,4.
Moreover, ∫

θ̃jφ̃
∗
je
z0θ̃j θ̃

∗
j+λ0θ̃j φ̃

∗
j+z0φ̃j φ̃

∗
j−λ0φ̃j θ̃∗j dφ̃∗jdφ̃jdθ̃

∗
jdθ̃j = λ0,∫

φ̃j θ̃
∗
j e
z0θ̃j θ̃

∗
j+λ0θ̃j φ̃

∗
j+z0φ̃j φ̃

∗
j−λ0φ̃j θ̃∗j dφ̃∗jdφ̃jdθ̃

∗
jdθ̃j = −λ0,∫

ez0θ̃j θ̃
∗
j+λ0θ̃j φ̃

∗
j+z0φ̃j φ̃

∗
j−λ0φ̃j θ̃∗j dφ̃∗jdφ̃jdθ̃

∗
jdθ̃j = 1.

It implies

n−1h̃(Q̃2) = n−1λ2
0

√
κ4

∑
δ∈I2m,4

∑
γ∈I′2m,4

((∧4U)δγ q̃
(2)
δ + ¯̃q

(2)
δ (∧4UT )γδ)

+O
(
n−3/2 log3 n

)
.

The above relation completes the proof of (3.20).

An analog of Lemma 3.3 is

Lemma 3.6. Let f̃(Q) = f(Q)− f(Λ̌0, 0). Then, for sufficiently large n,

max
logn√
n
≤‖Λ̌−Λ̌0‖+‖Q̂‖≤r

<f̃(U Λ̌UT , Q̂) ≤ −C log2 n

n

uniformly in U .

The proof needs only cosmetic changes because of additional variables Q̂.
Following the proof in the Gaussian case, one can see that (3.9) transforms into

fm = Ckn

∫
√
nΩn

44(Λ̃) exp

{
−1

4
tr(2λ0M+ z0ŽU + z0ŽRU )2 +

1

2
tr ŽU ŽRU
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+ λ2
0

√
κ4

∑
δ∈I2m,4

∑
γ∈I′2m,4

((∧4U)δγ q̃
(2)
δ + ¯̃q

(2)
δ (∧4UT )γδ)

− 〈 ̂̃Q, ̂̃Q〉}dµ(U)dΛ̃d
̂̃
Q(1 + o(1)),

where kn is defined in (3.11). The Gaussian integration over
̂̃
Q yields

fm = Ckn

∫
44(Λ̃) exp

{
−1

4
tr(2λ0M+ z0ŽU + z0ŽRU )2 +

1

2
tr ŽU ŽRU

+ λ4
0κ4

∑
δ∈I2m,4

∑
γ∈I′2m,4

(∧4UT )γδ(∧4U)δγ

}
dµ(U)dΛ̃(1 + o(1)).

Note that ∧4UT and ∧4U are mutually inverse matrices. Hence,∑
δ∈I2m,4

(∧4UT )γδ(∧4U)δγ = (∧4UT ∧4 U)γγ = 1.

Therefore,

fm = Ckn exp

{
m2 −m

2
λ4

0κ4

}
(1 + o(1))

×
∫
44(Λ̃) exp

{
−1

4
tr(2λ0M+ z0ŽU + z0ŽRU )2 +

1

2
tr ŽU ŽRU

}
dµ(U)dΛ̃.

The last formula shows that there are no differences in further proof up to a high

moments independent factor exp
{
m2−m

2 λ4
0κ4

}
.
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Про кореляцiйнi функцiї характеристичних
полiномiв дiйсних випадкових матриць з

незалежними елементами
Ievgenii Afanasiev

У статтi розглянуто кореляцiйнi функцiї характеристичних полiно-
мiв дiйсних випадкових матриць з незалежними елементами та вста-
новлено асимптотичну поведiнку цих кореляцiйних функцiй у формi
деякого iнтеграла за iнварiантною мiрою по множинi унiтарних само-
дуальних матриць. Цей iнтеграл обчислено для кореляцiйної функцiї
другого порядку. З одержаної асимптотики випливає, що кореляцiйнi
функцiї ведуть себе таким же чином, як i у випадку дiйсного ансамблю
Жинiбра з точнiстю до множника, що залежить лише вiд четвертого
моменту спiльного розподiлу ймовiрностей матричних елементiв.

Ключовi слова: теорiя випадкових матриць, ансамбль Жинiбра, ко-
реляцiйнi функцiї характеристичних полiномiв, моменти характеристи-
чних полiномiв, суперсиметрiя
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