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On Isometric Immersions of the Lobachevsky
Plane into 4-Dimensional Euclidean Space
with Flat Normal Connection

Yuriy Aminov

According to Hilbert’s theorem, the Lobachevsky plane L? does not ad-
mit a regular isometric immersion into E3. The question on the existence of
isometric immersion of L? into E* remains open. We consider isometric im-
mersions into E* with flat normal connection and find a fundamental system
of two partial differential equations of the second order for two functions.
We prove the theorems on the non-existence of global and local isometric
immersions for the case under consideration.
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1. Introduction

Hypothesis: There exists no isometric immersion with flat normal connec-
tion of a whole Lobachevsky plane L? into 4-dimensional Euclidean space E*.

We prove the following theorem.

Theorem A. If F? C E* is a C3-regular immersed surface with flat normal
connection isometric to the Lobachevsky plane L?, then the metric of F? admits
a conformal Chebyshev parametrization

di?
V1+52
There is no regular isometric immersion with flat normal connection of L?

into E* under which the curvature of the metric dI*> does not change the sign or
changes the sign at a finite number of bounded domains.

ds? = di? = dp® + 2 cosw dp dq + dg°.

We remark that the functions § and w have a geometrical meaning. The
function $(z) is equal up to a sign to the distance from z € F? to the segment
of indicatrix of normal curvature, and w(x) is the angle between asymptotic lines
with respect to normal vector that is parallel to the segment of normal curvature.
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Note some results on isometric immersions of Lobachevsky plane into the
Euclidean space.

E. Rozendorn constructed an isometric immersion of L? into E° in [5].

D. Bolotov proved the following theorem in [1].

Theorem B. Denote by H the mean curvature vector. The Lobachevsky
space L™ does not admit a regular isometric immersion into the Fuclidean space
E™™ such that |H| < const and the normal connection of the immersion is flat.

On the other hand, an arbitrary geodesic disk on L? admits an isometric
immersion into E3.
Note also recent interesting papers [2] and [4].

2. Proof of Theorem A

Proof of Theorem A. First, we consider a local isometric immersion or im-
mersion of a bounded domain.

Suppose that there exists an isometric immersion of a domain on the
Lobachevsky plane L? into E* as a regular surface F2. If the normal connec-
tion of F? is flat, then the ellipse of normal curvature degenerates into a segment
7. Denote by n1, no the unit normal frame on F? such that n is parallel to
and ng is orthogonal to . Denote by (u,v) the local coordinates on F2. Let 71,
T9 be unit vectors tangent to (u,v) coordinate lines, respectively. Let the end of
the normal curvature vector ki(71) at x € F? coincide with the end of 4. In the
normal plane of F2, introduce the orthogonal coordinate system (a, 3) using n1,
ng as its basis. Denote by a a half of the length of 4. The Gauss curvature K of
F? can be expressed [3] as follows:

K =0ao?+ 5% —d%
Write the metric of F? as
ds? = Edu® + G dv?,
and the second quadratic forms as
117 = L du'de?, o =1,2,

where u! = u, u? = v. Due to the choice of the normal frame and coordinates,

we have Li, = 0,i = 1,2. The following expressions

L, = (a+a)E, L%, = BE,
L%z =0, L%2 =0,
L%z = (a—a)G, L%Q =BG

hold. Let the Gauss curvature of F? be equal to —1. Then

a? + B2 —a® = 1.
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Hence, a® — a?> = —(1 + 3?). We can write the expression for Gauss curvature K

in terms of L;’] as follows:

LiLy,+ L} L3, Ly Ly,

K = = 2 - _
EG BG 7
Therefore, we can write
Li, Ly _
E/1+ /52 G\/1+ B2

Denote =tgo. Then — ctg o. Write the Codazzi equations in

Li,
E\/1+32

tensorial form as

G\/i

ik = Likj = Hoaklf; — Hoalj L
where o is the index of summation and pgq); are the torsion coefficients. In
developed form these equations take the forms

oLg; oL,
au}gj - 8ul]k - Fzﬂk Bj + Fzﬁngk = Maa\kng - :U'O'a|jquk-

Put a=1,0=2,i=j =1, k=2. Then the corresponding Codazzi equation is

oLl, oLi,
aulg Jul +T 1L%2 - F%th = M21|2L%1-
As the coordinate system is orthogonal, the Christoffel symbols simplify to
1 OF 1 0F
2, =——=— 71l =—==
2@ av” 127 2E Ov

Recall that

Ll =tgoFE\/1+ B2, Ll,=—ctgoy/1+ 32, L% =pE.

By substituting these expressions into the Codazzi equation, we get

Otgoly 1+5 B o115 — =28 BT T B2 = s
ou? 2G 8 2F Ou?
The latter equation can be reduced to
Otgoy/1+ B2 E,\/1+ B2
v 2F
Puta=2,0=1,71=1=1, k=2. The corresponding Codazzi equation can be

reduced to 95
5p = H1212 tgo\/1+ B2 (2.2)

Exclude ji19)p from (2.2) and plug into (2.1). After some transformations, we get

o <E<1+6>> o
v cos o

+ (tgo + ctgo) = o120 (2.1)
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As a consequence, \/E(1 + %) = C(u) coso. By changing the u-parameter, we
can get C(u) = 1. Therefore, one can put E(1+ 3?) = cos? 0. By using the other
two Codazzi equations, we obtain G(1 4 3?) = sin? .

Thus we can write the expressions for three fundamental quadratic forms:

s cos? o du? + sin’ o dv?
ST =
1+ /52 ’

77— sin o cos o(du? — va)’ 1% = Bds?,

VI

Let as pass to new new coordinates (p, q) by

u=p+gq v=p—q.

Then ds? takes the conformal Chebyshev form and the coordinate lines p = const
and ¢ = const become asymptotic lines of the form IT'. Namely,

B dp® + 2 coswdpdq + dq®
= e ,
_ 2sinw dpdg 1% = Bds?,

JIEP

ds?

Tt

where w = 20.

Notice that the system of equations for isometric immersion of a 2-dimensional
metric into 4-dimensional Euclidean space consists of one Gauss equation, four
Codazzi equations and one Ricci equation (A.Sym and J.Cieslinski claimed that
the latter equation was first derived by Kiihne ). In the case under consideration,
we intend to show that the system can be reduced to two equations for two
functions w and S.

We begin with the Gauss equation. Introduce the metric

di?> = (1+ p?)ds>.
Denote by K and K; the Gauss curvatures of ds? and di?, respectively. Then

i K —Valny/1+ 32
l:

1+ B2 ’

where V is the Laplace-Beltrami operator with respect to ds?. In our case we
can set K = —1. Denote by dS and dS; the area elements for ds? and ds?,
respectively. Then

dsS = %‘;2 dpdq, dS;=sinwdpdq.

Over any domain € C F? we have

/KldSl:—/(1+V21n\/1—|—ﬁ2)d5.
Q Q
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With respect to the (p, g)-coordinates, the curvature K; can be easily calculated:

We have the equation

1—|—V21n\/1+ﬁ2:m. (2.3)

sin w

Hence,
/(1+V2 Iny/14 (2)dS = / wpq dp dg. (2.4)
Q Q

If Q is the coordinate rectangle with vertices at P;, then

4

[ emivda =3 w(R)(-1): (2.5)

i=1

Since F? is a regular surface, we have 0 < w(P;) < . Therefore the module of
the right-hand side of (2.5) is bounded from above by 2.

On the Lobachevsky plane, consider the family of concentric disks C,. of radius
r bounded by circles I',.. We have

V21nx/1+52d82/ é(1m/1+52>ds,
C, T, 81/

where % is a derivative along the exterior normal to I';, and s is the arc length
parameter of [',.

Denote by D, the image of the geodesic disc C; in the (p, ¢)-plane endowed
with the metric dI?. Consider the integral

K;dS; = —/ wpq dp dg.
D, D,

Generally speaking, this integral is not bounded from above by a universal con-
stant. However, for every bounded domain D, there is some coordinate rectangle
that covers D, such that the integral of K; over the rectangle is bounded from
above by a universal constant.

In what follows, we will point out the conditions on di?> under which the
integral of —K; over every bounded domain D is bounded from above by some
universal constant M, i.e.,

—/ K;dS; < M = const.
D

Write the Lobachevsky metric with respect to the polar coordinates r, ¢ as

ds* = dr?® 4+ sh® r d¢?.
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The arc length element of I, is ds = shrd¢. Thus we have
/ ;T <ln\/1 > shr) dop = 7,/ In/1+ 32ds — / In /1 + B2 chrdo.
T,
Denote by S(r) the area of the geodesic disk C). on the Lobachevsky plane. Then

S(r) +/ ln\/1+ﬁ2ds—/ ny1+p%2chrdp=— K;dS;.

Dy

Denote 6 = In /1 + 2. Dividing both sides of the equation by S(r), we get

d (1 S’ chr 1
1+ 2 (= i - - | K 9.
+dr (S/FTHds>—i-S2 /Frﬁds / 0d¢o S/ 1 dS;. (2.6)

Notice that S(r) = 2n(chr — 1), S" = 2w shr. Equation (2.6) takes the form

d (1 sh?7 — chr(chr — 1) 1
1+d’I“<S(’I”) /Fred8>+ 27T(Ch7“—1)2 /T9d¢__S(T) /DTKldSl.

Suppose that the integral of —Kj; over each bounded domain is bounded from
above by a constant M. Introduce the function

1
flr)= S0 /Freds.

We get the inequality

, 1 M
O /FT0d8+S(T).

The third term in the right-hand side of the inequality tends to zero when r —
oo. Hence, the derivative of the function f(r) becomes less than —1 for large
enough r, and therefore the function f(r) is negative for large enough r. But the
function 6 is always positive. We come to contradiction.

Consider now the conditions under which the absolute value of the integral
of —Kj is bounded. Note that dl? is a complete metric.

1) Let the curvature do not change the sign. For any geodesic disk C,. there
exists a coordinate rectangle (2 that covers C).. Then

4
/ K; dS; S‘/Kldsl < Z
Cr Q =1

2) Let the curvature K; change the sign over a finite number of bounded do-
mains. There exists a geodesic disk C, that contains all these domains. Consider
two cases:

< 2.

w(P;)(—1)’
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a)

The Gauss curvature K; > 0 at infinity and over a finite number of bounded
domains K; < 0. Denote by A a union of all the domains with K; < 0. We
have

— K;dS; = —/ K;dS —/ K; dS;. (2.7)
Cr A Cr—A

The first term in the right-hand side of (2.7) is nonnegative but bounded
from above by some number M since A consists of a finite number of do-
mains. The second term is non-positive. Hence, for enough large r,

— K;dS; < M.
Cr

Suppose that K; < 0 at infinity. Let the number of bounded domains with
K; > 0 be finite. Denote by A the union of all domains with K; > 0. Let
C, be a geodesic disk which contains A. We can write again equation (2.7).
Now the first term in the right-hand side of (2.7) is negative. Let  be the
coordinate rectangle that contains C,.. We have the equation

/KldSl:/KldSl/ K, dS,). (2.8)
Q A Q—A

The left-hand side of (2.8) is bounded from above by 27. The first term
on the right-hand side is negative because A C C; C € and is bounded in
module by some number M. Therefore, the second term is also bounded
from above by M + 27, i.e.,

— K;dS; < M + 2m.
Q—-A

But C, — A C Q — A. Hence,
—/ K;dS; < — K;dS; < M + 2.
Cr—A Q—A
From (2.7) it follows that
— K; < My = const.

Cr

This inequality is valid for all large enough r. Therefore, in this case we
also come to contradiction.

Theorem A is proved. O

The non-existence condition for isometric immersion of complete L? into E*
can be formulated in terms of the function . For example, if § satisfies

Volny/1+ 62> (e—1), €>0,

then the isometric immersion of complete L? into E* does not exist.
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3. Fundamental system equations of isometric immersions of
L? into E* with flat normal connection

We have already obtained the expression for the torsion coefficient

_ Buctgo
H12)2 = W

From one of the Codazzi equations we get

Butg o

Hion = ——F7—-"
| V1452

The Ricci (Kiithne) equation has the form

aM12|1 B 6,u12|2
ov ou

Substitution of the torsion coefficient yields

=0.

0 Butgo L9 Buctg o
ov \ \/1+ 32 Ou \ \/1+ B2
Denote p = In(8 + /1 + 2). Then we come to the linear hyperbolic equation
Puv + Puovtgo — pyoyctgo =0

with respect to p. In terms of § = In /1 + 32 and v = arctg 8 this equation can

be written as
0, — 04 cosw n 6, cosw — b, ”yp ’)’q
sin w » sin w q sin w

The Gauss equation with respect to the metric of the Lobachevsky plane of
curvature K = —1 takes the form

- 1.+52 {<9p—eqcosw> N <0q—epcosw) _wpq}.
s w sin w P sin w q

<0p—€qcosw> A <6pco§w—9q> _ B
sin w » sinw ‘

Then the system of equations for isomeric immersion of L? into E* with flat
normal connection takes the form of two equations for two functions  and w.
Namely,

Denote

A+ B= Wp ’7‘1 v = arctg 3,
sinw

A— B =wy, —sinwe %, 0 =1In1+ B2
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4. On local isometric immersions of L? into £* with flat normal
connection and w = const

Theorem C. There is no local isometric immersion of L? into E* with flat
normal connection and w = const.

Proof. We use now the equation for the function p in the (u,v)-coordinates.
If w = const, then p,, = 0, and hence p = a(u) + b(v). Notice that 5 = sh p. We
have

1

2 __
ds BT

(cos® o (du)? + sin® o (dv)?) ((d cos ou)? 4 (dsin 01;)2) .

1
=113
Introduce new coordinates = ucoso, y = vsino. Then the coefficients of ds?
take the form F = G = —5—. The Gauss equation takes the form

ch?p”

K =shpchp(pss + pyy) + :03: + :032/'

Denote p2 = A(x), pre = C(x), pg = B(z), pyy = D(y). Then A, = 2p,C, B, =
2pyD. Suppose that K = —1. Write the Gauss equation as

1+A+B

h2p = —2
S C+D

The derivatives of both parts of this equation yield the equations

A, (14+ A+ B)C,
2pp ch2p = —2 ;
PeCloP =204 D (C+ D)
B (1+ A+ B)D
2p,ch2p=—-2—Y Y
Py =201 D (C+ D)
Denote o D
—==1, Z=M.
Pz Py

We can write two expressions for ch 2p:

20, (1+A+B)L
C+D ' (C+D)y? ’
2D (1+A+b)M
C+D (C+D)y3

ch2p=—

ch2p=—

By using these equations, we get

C-D (14+A+B)L-M)

-2
C+D (C+ D)?

=0.

Suppose that C' + D # 0. Then we have

2(C? -~ D?) = (1+ A+ B)(L - M).



On isometric immersions of the Lobachevsky plane

217

Differentiating first by « and then by ¥y, we obtain the equation

A B
L—z:ﬁZ:kozcons‘c

with separable variables. Integrating, we get
A—koL=Fky, B-—kM =k,

where k; are the constants of integration. Hence,

A~k Bk

L
ko ko

Thus we have come to the symmetric expression for ch 2p:

(1+A+B)(A+B—k‘1—k‘2)

h2p = —1
chop=-—1+ 2%(C + D)2

Besides,
A-B —
2C?— D) = (1+ A+ B). 2%2 k).
0

Now we can separate the variables. We get one equation with the argument =,

002 A(l+ky) A
ko ko

— — = ks =const, kg = ko — kq,

and the other equation with the argument y. Take the derivative in x and use

C, = pr,;—Okl, A, = 2p,C. Then

1+k4—2&%3;—0

4 — A =
CcCy " ko ko

In case of Cp, # 0, we get

It follows then that
ki + ko = —1.

The symmetric expression for ch 2p yields the equation

1 (14+ A+ B\? sh? 2p
h2p=—14+-———"2) =—1
“hep +2k‘0( C+D >

8ko

As a consequence, p = const, which contradicts to the Gauss equation. If ky =
0, then A, = B, = 0 and p2 +p§ = —1. In the case C = 0 or D = 0, we also

come to contradiction. Theorem C is proved.

O]
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5. An example of Chebyshev metric with a sequence of
bounded domains for which the integral curvature is un-
bounded from above

We intend to show that there is a metric
dly = dp? + 2 cosw dp dq + d¢*

and a sequence (), such that

/ KldSl — 00
QTL

when n — oo.

On the (p, g)-plane introduce the polar coordinates (r,¢). In the capacity
of the domains €2, we take the concentric disks M, of radius r bounded by the
circles 7, centered at the origin of coordinate system. We have

p = rcosg, r=p*+q,

q = rsin ¢, gb:arctgg.
p

Then we obtain

8T—cos¢ 0¢ _ sing

op ’ op r’

aT—sin¢ 0¢ _ cos¢

dq ’ dqg r

Rewrite the double integral over M, in terms of the contour integral along ~,,

1
J:/ wpq dp dq = 2/ —wp dp + wq dg.
M, Yr

The derivatives of w are of the form:

a—w—w cos ¢ —w sing
ap— T ¢ r ’
0
(;’;:wrsin¢+w¢60:¢.
We get
1 .
J = 2/% (wr cos¢—w¢sn;¢) d(rcos ¢) + (wr Sin¢+w¢CO:¢) d(rsin ¢)

r

= g / (wr sin2¢ — w¢cos 2¢) do.
Yr

After transformations we obtain

j-rd wsin2¢d¢>—/ wsin 2¢ d.
2dr Yr Y

T
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Suppose
w(r, @) = eb(r)sin2¢ + %, e > 0.

Choose the function b(r) such that |b(r)| < 1 and three derivatives at the origin
are equal to zero. Choose € small enough to satisfy 0 < w < 7. Under these
conditions the metric is regular. We have

2m
J = ;erdbd(:)/o sin? 2¢ dp — eb(r) /T sin? 2¢ d¢.

Take the sequence

3

Ty =
k=1

| =

It is easy to construct a bounded regular function b(r) satisfying

1 1

b(rp,) =0 and b(r, + m) = :l:i.

Choose + for odd n and — for even ones. Since the distance between r, and
rnt1 tends to zero, |b/| — oo for some sequence of points. Therefore, for some
sequence of disks M, the integral curvature is not bounded from above.

Acknowledgments. The author thanks Prof. A. Yampolsky and Dr. D. Bo-
lotov for assistance in preparing the manuscript.

References

[1] D.V. Bolotov, On isometric immersions with flat normal connection of Lobachevsky
space L™ into Euclidean space E™T™, Mat. Zametki 82 (2007), No. 1, 11-13 (Rus-
sian).

[2] A.A. Borisenko, On the structure of multidimensional submanifolds with metric of
revolution in Euclidean space, Zh. Mat. Fiz. Anal. Geom. 15 (2019), No. 2, 192-202.

[3] E. Cartan, Riemannian Geometry in an Orthogonal Frame, Moscow State Uni-
versity, Moscow, 1960 (Russian); Engl. transl.: World Sci. Publ. Co. Pte. Ltd.,
Singapore, 2001.

[4] V.O. Gorkavyy and R. Posylaieva, On the sharpness of one integral inequality for
closed curves in R*, Zh. Mat. Fiz. Anal. Geom. 15 (2019), No 4, 502-509.

[5] E.R. Rozendorn, Realization of the metric ds®> = du® + f(u)?dv? into five-
dimensional Euclidean space, Dokl. Acad. Sci. Armenian SSR (1960), 197-198 (Rus-
sian).

Received April 30, 2020.

Yuriy Aminov,

B. Verkin Institute for Low Temperature Physics and Engineering of the National
Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine,
E-mail: aminov@ilt.kharkov.ua


mailto:aminov@ilt.kharkov.ua

220

Yuriy Aminov

ITpo isomerpuyHi 3anypenHs 1ommuuaun JlobagyeBcbKOro
B YOTMPUBUMIPHUII €BKJIiAiB IIPOCTIpP 3 ILJIOCKOIO
HOPMAaJIBHOIO 3B’SI3HICTIO

Yuriy Aminov

Brizno 3 reopenmoio I'imbbepra, miomuna Jlobadeschkoro L2 ne Mozke 6y-
TH i3oMeTpuyuHO 3aHypenoo B E3. [InTanus iCHYBaHHS i30METPUTIHOTO 3aHY-
pennsi L2 B E* sanmmaerses Binkpurum. My posrisgaeMo isoMeTpraHi 3a-
HypenHs B E* 3 II0CKOI0 HOPMAJIBHOIO 3B’A3HICTIO i 3HAXOMUMO (yHIAMEH-
TaJbHY CACTEMY JBOX Ju(EpEeHIiaJbHAX PIBHSIHDb 3 YACTUHHUMHU MTOX1THUMUI
JPYTOro MOpsSAKy [Jist ABoX (yHKIN. /loBeeHo Teopemu mpo HeEiCHyBaHHs
i30MeTPUYIHUX IVIO0AJBHUX T JIOKAJIHHUX 3aHYPEHDb 3& MEBHUX YMOB.

KirrouoBi ciioBa: i3oMeTpuyHe 3aHyPEHHsI, iIHIMKATPHUCA, KPUBU3HA, aCUM-
NITOTUYHA KPUBaA
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