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Entropy Solutions of the Dirichlet Problem
for Some Nonlinear Elliptic Degenerate
Second-Order Equations
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In the present paper, we deal with the Dirichlet problem for a model
nonlinear elliptic second-order equation with degenerated (with respect to
the independent variables) coefficients, lower term, and L!-right-hand side.
The existence of an entropy solution to the problem under consideration is
proved.
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1. Introduction

Let n > 2 be an arbitrary fixed natural number, 2 be a bounded domain in
R™ and 9€) be a boundary of €.

We consider a problem on finding a function u :  — R that satisfies (in some
sense) an equation

n

— > " D; (v(@)|DiulP2Dyu) + h(z)g(u) = f(z), €, (1.1)
i=1

and a boundary condition
0. (1.2)

o .

Here and in the sequel we use a notation D; := e 1 =1,...,n, and suppose
Ti

that p € (1,n), v : @ — R is a measurable function such that

“‘aQ:

velLl.(Q), v>0ae inQ, (1/0)/PDerLl(Q), (1.3)

heL'(Q),h>0inQ, g: R — R is a continuous and non-decreasing function
such that g(0) = 0, f € LY(Q).

Our research presents an actual branch of the modern theory of partial differ-
ential equations. This area includes studying nonlinear equations and variational
inequalities with L!-data or measures as data. These investigations have been
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actively carried out since the 80s of the last century. Today the theory of nonlin-
ear isotropic nondegenerate (with respect to the independent variables) elliptic
second-order equations with L'-right-hand sides is built. So, the concepts of
the weak, entropy and renormalized solutions were introduced, the theorems on
the existence and uniqueness of these types of the solutions were proved, the
conditions of their belonging to some Lebesque and Sobolev spaces were ob-
tained. A significant contribution to the development of this theory was made
by Ph. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, F. Murat, M. Pierre,
J.L. Vazquez, J.-M. Rakotoson, A. Alvino, V. Ferone, A. Mercaldo, L. Orsina,
A. Porretta, S. Segura de Ledén, G. Trombetti, A. Kovalevsky and others.

The main difficulty in studying the solvability of elliptic equations with L!-
right-hand sides is that the right-hand side does not generate a linear continuous
functional on the corresponding energy Sobolev space. As a result, the using of
the well-known theory of monotone operators is impossible. We need to clarify
a concept of the solution of such an equation. In the case of sufficiently regular
right-hand side, we say about a generalized solution. Otherwise, the natural
analogue of the generalized solution is a weak solution (i.e., the solution from
Whl in sense of the integral identity). The existence of weak solutions of the
Dirichlet problem for nonlinear elliptic equations with L!-right-hand sides was
investigated by L. Boccardo, T. Gallouét in [5], [6].

An effective approach for studying the solvability of the Dirichlet problem for
nonlinear elliptic second-order equations with L!-right-hand sides was proposed
by Ph. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre, J. L. Vazquez
in [4]. The authors defined an entropy solution to the problem under considera-
tion and introduced new functional classes containing entropy solutions. These
classes are a natural extension of the corresponding energy Sobolev spaces. It
is found that if the equation coefficients satisfy the standard conditions of the
growth, coercitivity and strict monotonicity, then there exists a unique entropy
solution for all values of the parameter characterizing the rates of growth of the
coefficients with respect to the corresponding derivatives of unknown function.
The above-mentioned and other close investigations relate to the L!'-theory of
nonlinear isotropic nondegenerate (with respect to the independent variables)
second-order equations. As for nonlinear elliptic second-order equations with
L'-data or measures as data with anisotropic or degenerate (with respect to the
independent variables) coefficients, we note the following. The existence of a weak
solution of the Dirichlet problem for a model elliptic equation with anisotropic
and nondegenerate (with respect to the independent variables) coefficients and
measure in the right-hand side was established by L. Boccardo, T. Gallouét,
P. Marcellini in [7]. The existence of weak solutions for a class of anisotropic and
nondegenerate (with respect to the independent variables) equations and locally
integrable data was proved by M. Bendahmane and K.H. Karlsen in [3]. The
solvability of the Dirichlet problem for elliptic equations with isotropic and de-
generate (with respect to the independent variables) coefficients and L!-data or
measures as data was studied by L. Aharouch, E. Azroul, A. Benkirane in [1],
Y. Atik, J.-M. Rakotoson in [2], A.C. Cavalheiro in [8], G.R. Cirmi in [9], F.Q. Li
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n [18].

The questions on the existence and properties of the solutions for anisotropic
and degenerate (with respect to the independent variables) second-order equa-
tions with L'-right-hand sides without lower terms were considered by A. Ko-
valevsky and Yu. Gorban in [16], [17]. Similar questions for the equations with
lower terms were later studied by Yu. Gorban in [10] (the existence of an entropy
solution), and [11] (the uniqueness of an entropy solution). Namely, in [10], the
problem considered is the Dirichlet problem for an equation

— Y  Di(ai(x,Vu)) = F(z,u), z€Q, (1.4)
=1

with a boundary condition (1.2). Here:

e foreachie€ {1,...,n}, a; : @ x R" = R is a Carathéodory function such
that for a.e. x € Q and for every £, & € R", £ # ¢,
n n

> (1 i)V e Day (@, )17/ <@ > wi@)|&]% + g1 (),
=1

=1
n
Z a;(z 5 CQZ vi(w ’€z|ql - g2(),
=1
n

Y lai(e, &) — ai(w, €] (& — &) > 0,

i=1
where 1 < ¢; < n, v; € LL (), v; > 0 a.e. in €, (1/v)Y =1 e LY (@), &,
Gy > 0 are constants, g1, go € L'(Q), g1, g2 > 0 in ;

e F:QxR—Risa Carathéodory function such that for a.e. x € Q, F(x,-)
is non-increasing on R, and for any s € R, F(-,s) € LY(Q).

The main result of [10] is the statement (Theorem 4.1) that under the above
conditions there exists the so-called entropy solution of the Dirichlet problem
(1.4), (1.2). A general approach of [4] was used for proving it. One of the basic
steps of this approach is to get special uniform estimates for the solutions {u;},
[ € N, of the approximating Dirichlet problems:

meas{|u| > k} < &k, (1.5)
meas{yil/qi|Diul| k} < @k~ w04 =1 p, (1.6)
: . . n(@-1)
where £ > 1 is an arbitrary real number, ¢ := ﬁ, q is the harmonic
n —
mean of qi,...,qn, 3, C4 are positive constants depending only on n, q1, ..., gn,

e, e, aillpiys llo2lloi@: 1FC 0@y, [FC =Dl [FC D),
11/l 11701 (> and meas Q.
In the present paper, we deal with a partial case of equation (1.4):

gi=p, vi=v, az,&)=v(@)|&P 2%, (@,8)ecQxR", i=1,...,n,
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F(z,s) = f(x) — h(z)g(s), (z,s) € QxR

The main result of our paper is the theorem on the existence of entropy
solutions to the problem (1.1), (1.2). The approach from [4], mentioned above,
was applied. A model case allows us to clarify some results of [10]. It concerns
uniform estimates (1.5), (1.6). Such inequalities are used for proving the results
on the existence and uniqueness of different types of solutions for equations and
variational inequalities with L'-data or measures as data. Besides, estimates
(1.5), (1.6) are used in studying summability properties of solutions (see, for
example, [14, § 6]). In our simple case, we can obtain an explicit form of the
constants ¢3, ¢4 and write down their explicit forms depending on the input
parameters. It allows to improve the summability of entropy solutions in a model
and more complicated cases.

2. Preliminaries

In this section, we introduce some concepts and present the results similar to
those from [15] which will be used in the sequel.

We set

. n(p—1) . 1/(p—1)
D=y v L+ |(1/v) 1)

Let WP(v,0) be a linear space of all functions v € W11(Q) such that
v|DiulP € L' (). The mapping

n 1/p
Hu||17p,yz/ |ul dw+z (/ V]Diu\pdx>
Q — \Ja

is a norm in WP (v, Q), and, in view of the second inclusion of (1.3), WP (v, Q)
is a Banach space. Moreover, by virtue of the first inclusion of (1.3), we have

C§e () € WhP(1, Q).
We denote by WP (v, Q) the closure of the set C§°(€2) in the space WP (v, Q).

Proposition 2.1. The space W'P(v,Q) has the following properties:

(i) WhP(y,Q) c WHH(Q), and for every function uw € WYP(v,Q), we have

lellwri@) < epullullip.;

(ii) if uj — u weakly in WHP(v,Q), then u; — u strongly in L'(2);

o
(iii) WhP(v,Q) is a reflevive space.

Proof. Let u € WHP(,€). Using an inclusion v € WH1(Q) and the Hélder
inequality, we establish
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fullwssio = [ fuldo+ 3 [ ()20t Diafde < [ Julda
Q — Ja Q
n (r=1)/p 1/p
+ Z (/ (1/V)1/(p1)dac> </ v|Djul? dm) < cpullullip-
i=1 \/9 @

So, assertion (i) is true. From this fact and the compactness of the embedding

WhH(Q) in LY(Q) we deduce (ii). Finally, the proof of (iii) can be found in
[14]. O

Further, for every £ > 0, let Ty : R — R be a function such that
s if |s| <k,
OO S
k signs if |s| > k.

By analogy with known results for nonweighted Sobolev spaces (see, for in-
stance, [12, Chapter 2]), we have: if u € W'P(1,Q) and k > 0, then Ti(u) €
WLP(v,Q) and for every i € {1,...,n},

By T'P(v, ), we denote the set of all functions u : © — R such that for every

k > 0 we have Ty (u) € WiP(v, Q).
Clearly,

WP (1, Q) € T'2(v, ). (2.2)
Definition 2.2. For a function u € 70-1”’(1/, ) we take
ou(zx) := (bru(x),...,0pu(x)), z€Q,
where for every i € {1,...,n} we put

oiu(z) := lim D;Ti(u)(z) for a.e. x€ Q.

k—00

Proposition 2.3. Let u € T'P(v,Q). Then for every k > 0 we have
DZTk(u) = (5lu 1{|u|<k} a.e. in Q, 1= 1, s, .

The proof of this proposition is in [13].

From (2.1), (2.2) and Proposition 2.3, it follows that for u € WP(1, Q) we
have §;u = D;u a.e. in Q, i =1,...,n.

Proposition 2.4. Let u € TP (v,Q) and v € WYP(v, Q)N L>®(Q). Then u—
v € TH(v,Q), and for every k > 0,

D;Ti(u —v) =d6u— Dy a.e in {jlu—v| <k}, i=1,...,n.
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The proof of this proposition can be found in [14].

Proposition 2.5. Let u € TP (v,Q) and w € TYP(v, Q) N L>®(Q). Then for
every k > 0 we have v |§;ulP~26;u D;Tj,(u —w) € LY (), i =1,...,n.

Proof. First of all, we note that there exists a measure zero set £ C €) such
that
Ve e Q\E  |w(z)| < [Jw]re)-

Fix k> 0,7 € {1,...,n}. From the definition of the truncated function T} it
follows that

v|6iuP~26;u DiT(u —w) =0 a.e. in {ju—w| > k}. (2.3)

Put k1 = k + ||w[| e (q). Using an inclusion {|u —w[ < k} \ B C {[u| < k1}
and Proposition 2.3, we obtain

DT, (u) = du a.e. in {|Ju —w| < k}.
From the latter quality and Proposition 2.4, we deduce

V\5iu|p*26iu DiTk.(u — w) = V’DiTkl (u)’p72DiTkl (u)(DiTkl (u) — Diw)
= v| DTy, (w)|P — v|D;Ty, (w)|P~2D; Ty, (u)Djw  a.e. in {ju —w| < k},
and thus
’1/ \(5iu\p_26iu DiTk(u — w)} <v |D1'Tk1 (u)|p +v |D1'Tk1 (u)|p_1\Diw\
a.e. in {lu —w| < k}. (2.4)

We apply the Young inequality to estimate the second term on the right-hand
side of (2.4):
v [DiTy, (w)[P~ [ Diw| = v /P02~ D/2 | DT, ()P~ Dywl
S v|DiTy, (u)]P + v |DywlP a.e. in {Ju—w| < k}. (2.5)
Taking into account (2.4), (2.5) and the summability of the functions
v |D;iTy, (u)|P and v |D;wl|P in Q, we infer that a function v |§;ulP~26;u D;T).(u —

w) is summable a.e. in {Ju —w| < k}. This fact and (2.3) provide the required
result. O

Proposition 2.6. There exists a positive constant cg depending on n, p, and

”(]./V)l/(p_l)HLl(Q) such that for every function u € V?/l’p(y, ),

(n—1)/n n 1/np
(/ ]u\"/("l)dx) < CQH </ V]Diu|pda:) .
Q 1 \a

The proof of this proposition is in [14].
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3. Existence of the entropy solution to the Dirichlet problem
(1.1), (1.2)

In this section, we define an entropy solution of the problem (1.1), (1.2) and
prove its existence.

Definition 3.1. An entropy solution of the Dirichlet problem (1.1), (1.2) is
a function u € T1P(v, Q) such that:
(1) hg(u) € LH(Q);

(ii) for every w € WhHP(v,Q) N L>® () and k > 1,
/ Z v |6;ulP~26;u DTy (u — w) da+
iz

+/th(u)Tk(u—w)de’</Qka(u—w)dz- (3.1)

Note that Definition 3.1 is well-defined. From Proposition 2.5, it follows that
the first left-hand integral in (3.1) is finite. Using (i) and the boundedness of
Ti(u — w), we obtain that the second left-hand integral in (3.1) is also finite.
Finally, by virtue of the inclusion f € L!(2) and the boundedness of Tj(u — w),
we deduce that the right-hand integral in (3.1) is finite too.

Theorem 3.2. Under the above assumptions, there exists an entropy solution
of the Dirichlet problem (1.1), (1.2).

Proof. We will use the approach proposed in [4] to study the solvability of the
nondegenerate (with respect to the independent variables) isotropic second-order
equations with L'-right-hand sides. The proof is in 9 steps.

Step 1. For every [ € N, we put

9i(s) ==Ti(g(s)), s € R; hy(z) =Ti(h(x)), filz) :=Ti(f(x)), z €
F(v)(z) = h(x)gi(v(z)), €Q, v:Q—R isan arbitrary function.

Clearly, {h;} C L>(Q), {fi} C L>(),

VIieN g < hllog),  filloig < Il (3.2)
llim |he = Rl =0, lim [[fi = fllL1q) =0, (3.3)

—00 =00
Fi(v)(x)v(x) 20 for a.e. z € Q, v:Q — Ris an arbitrary function.  (3.4)

From the properties of the higher part of equation (1.1), assertion (3.4) and
the results from [19] on the solvability of equations with monotone operators, we

(o]
deduce that for all [ € N there exists a unique function uv; € WP (v, Q) such that

/{Zl/]Diul‘p—QDiulDiw—i—Fl(ul)w}dx:/flwdac (3.5)
Q Q

i=1
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for every function w € WhHP(v, Q).

By ¢, 1 =1,2,..., we denote the positive constants depending only on n, p,
1£1 L1 )s 1Rllzr@ys (1(1/2)Y @D 11y and meas Q.

Let us show that for every &, [ € N the following inequalities hold:

/ Z v|Dyw|P dx < erk, (3.6)
{lwl<k} ;=

/ ()| d < co. (3.7)
>k}

In fact, let k, I € N. As u; € WiP(v,Q), we have Tj(u;) € WP (1, ). Choosing
w = Ty(u;) as a test function in (3.5) and taking into account (2.1), we get

/ 2 | D Ul|pdl‘+/Fl(UZ)Tk(ul déE—/szk w) dz
{lw|<k} ;=

In view of (3.2), from the latter equality we obtain

/{Iul<k}z v|D; uz\pdaz+/ﬂ(ul)Tk(ul) <kl fll L2 (3.8)

Assertion (3.4) and the properties of the function T} imply that

Fl(ul)Tk(ul) = 0 a.e. in Q, (39)
Fi(w)Ti(w) = k| Fy(w)] ace. in {Ju| > k}. (3.10)

The estimate (3.6) follows from (3.9) and (3.8). Finally, inequality (3.7)
follows from (3.10) and (3.8).
Step 2. Now we show that for every k, [ € N,

meas{|u;| > k} < esk™?, (3.11)
meas{v"/?|Dyuy| > k} < eak ™ PP/AFP) =1 n. (3.12)

In fact, let k, I € N. We have |Ty(w;)| = k on {|u;| > k}; then
k0D meas{lw] > k} < / T () [/ "Dl (3.13)
Q

Using Proposition 2.6, (2.1) and (3.6), we obtain

(n—1)/n 1/np
</ |Tk(ul)|”/(”_1)d:p> CoH (/ V\Diul|pd:ﬁ> < colerk)VP.
Q {lur| <k}

Inequality (3.11) follows from the latter estimate and (3.13).
Next, we fix i € {1,...,n} and set

ko = kP OHP) @ = {|wg| < K, 0P [ Dyug] > K.
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We have
meas{"/? | D;u;| > k} < meas {|u;| > k.} + meas G. (3.14)

From (3.11), it follows that
meas{|u;| = k.} < 03k*_73. (3.15)

Moreover, in view of the definition of the set G' and (3.6), we get

kP meas G < / v|Djw|P dx < cik,.
{lur <k}

Inequality (3.12) follows from the latter estimate and (3.14), (3.15).
Step 3. Assertions (2.1) and (3.6) imply that for every k& > 1 the sequence

{T}.(w;)} is bounded in WP (v, Q). As the space W'P(v, Q) is reflexive, then there

o
exists a sequence {2z} C WHP(1,Q) and a subsequence of the sequence {u;} (we
denote it by {u;}) such that

VEEN Ty(w)— 2 weakly in W(r, ). (3.16)

Step 4. Let us show that the sequence {u;} is fundamental on measure.
Indeed, let k,1,j € N. We fix t > 0 and set

G = {Jul| < k,|uj| <k, |u —uj| > t}.
It is clear that
meas{|u; — u;j| >t} < meas{|w| > k} + meas{|u;| > k} + measG'.  (3.17)

As t < |Ti(w;) — Ti(uj)| on G, we obtain
t meas G’ < /Q Ty (w) — T (uj)| de.
This inequality, (3.11) and (3.17) imply that for every k,l,j € N,
meas{|u; — uj| >t} < 2c3k P 4171 /Q Ty (w) — Tr(uj)| de. (3.18)
Let € > 0. We fix k € N such that

2e3k P < /2. (3.19)

Taking into account (3.16) and Proposition 2.1, we infer a strong convergence
Ty (u;) — z in L1(2). Then there exists N € N such that for every I, € N,
l?j 2 N7

/Q T (w;) — Ti(uy)| de < et /2.
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From this inequality, (3.18) and (3.19), we deduce that for every l,j € N, [,j > N
meas{|u; — u;| >t} <

This means that the sequence {u;} is fundamental on measure.

Step 5. Now we show that for every i € {1,...,n} the sequence {v"/?Du;}
is fundamental on measure.

For every t > 0 and [, 5 € N, we put

n
N¢(l,j) = meas { Zul/p |Diw; — Djug| > t}.
i=1

Besides, for every t > 0, q,k,l,j € N, we set
Eiqr(l,j) = {Zy/p|Dul Djuj| >

i=1
1
Zy/p|Dul| qZul/p|Duj| q, |u — uj|<k}.

Using (3.12), we establish that for every t > 0, q, k, [, j € N,
Ni(l,7) < 2e4n™ g PP/ OFP) 4 meas{|u; — uj| > 1/k} + meas By 4 (1, 7). (3.20)

Further, we get one estimate for some integrals over E} ;1 (1, ). So we intro-
duce now auxiliary functions and sets.

Let for every z € 2, &, : R” x R®™ — R be a function such that for every
pair (§,¢') € R" x R™,

n

0,(6,8) = vl@) [lGIP26 — 16/ 1P2E)] (& —€)).

i=1
Note that from the definition of ®, it follows that

(i) for every x € Q\ E, the function @, is continuous on R"™ x R";

(ii) for every x € Q\ E and &, & € R", € # ¢, we have ®,(£,¢') >0
Put for every t > 0, g > ¢, and = € (),

Grglz) = {<u>ewxw ZVI/P )l <

Zv”p gl < a, Zv”p )Ié: — £;|>t}-

As v >0 a.e. in 2, then there exists a set EC Q, measf? = 0, such that the set
Gt ,q(2) is nonempty for every ¢t >0, ¢ > ¢, and z € Q\ E.
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Let for every t > 0 and ¢ > t, pq: 2 — R be a function such that

min &, ifxecQ\E
fig(z) = q Gral@ .

0 ifzekE
For every ¢t > 0 and ¢ > t, we have p; 4, > 0 a.e. in Q, and pz, € L! (Q)~
Let t > 0,¢ >t+1,and k,l,j € N. Wefix x € E;,x(l,j) \ E, and set
£ = Vu(x), & = Vu;(z). As (§,¢) € Grg(x), then pyq(x) < ,(&,¢). This

inequality and the definition of the function ®, imply that
peg(x) <O v [|Diw(2) P2 Diwy () — | Diwj(x) [P~ Dinj ()] (Dywy () — Dy ().
=1

Then, taking into account the nonnegativity of the right-hand side of the latter
inequality and (2.1), we obtain

n
-2
Ht,q ClZL‘ / 1% [|Dzul ’p Diul
/;t ,d, k(lv.j) Q { Z

=1

- \Dzu] ’p_zDin] DiTl/k(ul - 'LL])} dx. (321)

In view of (3.5), we have

/ { Z V|Diul‘p_2DiUlDiTl/k<ul - “j)} dx
Q

i=1

:/QflTl/k:(ul_uj)dx_/QFl(ul)Tl/k(ul_Uj)dx,

/ { Z V‘Diuj‘p_gDiujDiTl/k(Uj — Ul)} dx
2 i=1
= / fi T yp(ug —wy) doe — /QFj(Uj)Tl/k(Uj — ) dx.

From these equalities and (3.21), it follows that

/ fit,q dr < / [fi = fildx + - / |Fi(ur) — Fj(uy)| da. (3.22)
Et,q,k(l7.7

As h > 0 in Q, from the definitions of F; and Fj, and (3.7), we infer that for
every l,j € N|

/ |Fy(w) — Fy(uy)] de < 26 + 4(g(1) — g(=1)) 1Rl 1 gy

Using the latter estimate and (3.22), we find that for every ¢t > 0, ¢ > t + 1,
k,l,7 € N, the following inequality holds:

1 2
[ mgde < [ 5= plde s (e 2000) = 200-D) sy (329
thk(lnj) Q
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The sequence {u;} is fundamental on measure. Then there exists an increasing
sequence {ng} C N such that for every k,l,j € N, I, j > ny, we have

meas{|u; — u;j| > 1/k} < 1/k. (3.24)
Let t > 0 and € > 0. We fix ¢ > t + n such that
2eyn” g PP/ FP) /4, (3.25)

Put for every k € N,
ap = sup meas Ey; (1, 7).
Ljzng
Let us show that ap — 0. Assume the converse. Then there exists 7 > 0, an
increasing sequence {ks} C N and the sequences {ls},{js} C N such that for
every s € N we have g, js > ng, and

meas Ey g . (ls, js) > T (3.26)

Assume Gg = Ei g1, (ls,Js), s € N. In view of (3.23) and (3.2), for every s € N
we get

2
[ e < 2 (cs+ 2000 290 ) 1o
Gs s

It means that
Sli{glo Gs 'LLtvq dx = 0
From this assertion, taking into account u;q € LY(Q) and teq > 0 a.e. in Q, we
infer that meas G — 0. This fact contradicts to (3.26). Hence we conclude that
ap — 0.
Finally, we fix k£ € N such that the inequalities hold:

1/k <e/4, ap < g/2. (3.27)

Let 1,7 € N, 1,j > ng. From (3.20), (3.24), (3.25) and (3.27), it follows that
Ni(1,7) < e. Tt means that for every i € {1,...,n} the sequence {v'/PDju;} is
fundamental on measure.

Step 6. From the results of Steps 4, 5 and by F. Riesz’s theorem, we get the
following facts: there exist measurable functions u : Q@ - R and v; : Q@ — R, i =
1,n, such that the sequence {u;} converges to u on measure, and for every i €
{1,...,n} the sequence {v*/PD;u;} converges to v; on measure. As is generally
known, we can extract the subsequences converging almost everywhere in 2 to
the corresponding functions. We may assume without loss of generality that

u — u  ae. in Q, (3.28)
Vie{l,...,n} vY’Djuy —v; ae. in Q. (3.29)

From (3.28), (3.16) and Proposition 2.1, we deduce that for every k € N,

Ti(u) € WP (1, Q), (3.30)
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Ti(u;) — Tp(u) weakly in I/%/l’p(y, ). (3.31)

Let us show that u € ’70'14’(1/, Q). Indeed, let £ > 0. Take r € N, r > k. In
view of (3.30), we have T.(u) € ﬁ/l,p(% ). Hence, by inclusion (2.2), we obtain
Te(Tr(u)) € V?/l’p(u, ). This fact and the equality Ty (u) = T (7T (u)) imply that
Ty (u) € V?/l’p(z/, Q). Therefore, u € ’;’1’1"(1/, ).

Step 7. Now we show that

Vie{l,...,n} Dyu — du a.e. in . (3.32)

In fact, let ¢ € {1,...,n}. In view of (3.28), there exists a set E' C €,
meas E' = 0, such that

Ve e Q\E': w(r) = u(x), (3.33)
and in view of (3.29), there exists a set E” C 2, meas E” = 0, such that
Vee Q\E" vYP(x)Diuy(z) — vi(z). (3.34)

Fix k € N. By (2.1), if I € N, then there exists a set E) ¢ Q, meas E() = 0,
such that
Vo e {|lu| <k}\EY: DTh(w)(x) = Diu(z). (3.35)

We denote by EAa union of sets E', E” and EW, [ € N. Clearly, meas £ = 0. Let
z € {|lu] < k} \ E. In view of (3.33), there exists Iy € N such that for every [ €
N, I > ly, we have |u(z)| < k. Let I € N, 1 > ly. Then z € {|w| < k}\ E® and,
according to (3.35), we get

VP () DTy (wy) () = vY/P(2) Dy ().
From this equality and (3.34), we deduce that v'/?D;T}(w;)(z) — vi(z). Thus,
VWPDTL(w) — v ace. in {|u| < k}. (3.36)

Besides, in view of (2.1) and (3.6), for every [ € N,
Q

Using Fatou’s lemma, from (3.36) and (3.37) we infer that the function |v;|P is
summable on {|u| < k}.

Further, let ¢ : © — R be a measurable function such that |¢| < 1 in €, and
let € > 0. As the function |v;| is summable on {|u| < k}, then there exists 1 €
(0,€) such that for every measurable set G C {|u| < k}, meas G < ¢1, we have

/ o] da < . (3.38)
G
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Moreover, in view of (3.36) and Egorov’s theorem, there exists a measurable set
' c {Ju| < k} such that

meas({|u| < k} \ Q) < e, (3.39)
v PDiTy(w) — v;  uniformly in €. (3.40)

From (3.38) and (3.39), we infer that

/ |vi| dz < e. (3.41)
{lul<kI\

From (3.40), we deduce that there exists [; € N such that for every [ € N, [ >
l1, the following inequality holds:

(WP DTy () — vi| da < e. (3.42)
Ql

Let I € N, I > 1;. Using (3.41), (3.42), the Holder inequality, (3.39) and (3.37),
we get

‘/{ | k}[yl/pDiTk(ul) —vi] pdz
ul<<

< 2 +/ VP DT ()| dac
{lul <K\

1/p
< 2 4P D/P </ V’Dz’Tk(Ul)\pdw) < 26+ P/ k)P,
Q
As € is an arbitrary constant, from the latter estimate it follows that

lim [P DTy (w) — vi] o dz = 0. (3.43)
=00 J{|u|<k}

On the other hand, let F': WP(1,Q) — R be a functional such that for every
function v € WP (v, Q),

(F,v) = / (l/l/pDﬂ)> pdz.
{lul<k}

It is easy to see that F' € (VCE/LP(V, 2))*. Hence, by virtue of (3.31), we have
(F, T () = (F, Ti(w))-

This fact and the definition of the functional F' imply that

lim (Vl/pDiTk(ul)) pdr = / (Vl/pDiTk(u)> pdz. (3.44)

1=00 J{|u|<k} {lul<k}

From (3.43) and (3.44), we deduce that

/ [’Ui - l/l/pDiTk(u)} pdr =0.
{lul<k}
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In turn, from this equality and Proposition 2.1, we infer that
v; = vP8u  ae. in {|u| < k}.
Since k£ € N is an arbitrary number, from the latter assertion it follows that
v; = v/P&u ae. in Q. (3.45)

Taking into account that v > 0 a.e. in £, from (3.29) and (3.45), we obtain that
Dju; — d;u a.e. in Q. Thus, (3.32) is proved. Then

Vie{l,...,n} v|DayP"2Dju; — v|6ulP"25u ae. in Q. (3.46)
Step 8. Let us show that the following assertions are fulfilled:
hg(u) € L(Q), (3.47)
Fi(u;) — hg(u) strongly in L'(€). (3.48)
Indeed, in view of (3.28), we have
Fi(u;) = hg(u) a.e. in Q. (3.49)

Moreover, using (3.7) and the conditions on the functions h, g, we get for every
l €N,

/Q |Fy(w)| dx < cg.

From this fact, (3.49), an inclusion h € L'(Q) and Fatou’s lemma, we obtain
(3.47).

Now let us prove (3.48). Firstly, we establish that for every k, | € N the
following estimate holds:

[ IR@ld< [l i Sl (350
{lur|>2k} || >k

Let z € CY(R) be a function such that 0 < 2 < 1on R, z=0on [-1;1], z =
1 on (—o0; —2] U [2;+00), and for every s € R, 2/(s) signs > 0.

Fix arbitrary k, [ € N, and denote by z; : R — R a function such that for
every s € R,

w(s)=Ti (%) P (2) . (3.51)

From the properties of the functions 77 and z, it follows that for every s € R,

|zi(s)] < 1. (3.52)

Besides,
VseR |s| < k= z(s) =0; (3.53)
Vs eR |s| =2k = |z(s)] = 1. (3.54)
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Definition (3.51) implies that z(u;) € Wlﬁp (v, ), and

Diz(w) = k71 ’( ) (%)Dul a.e.in Q,i1=1,...,n. (3.55)

Substituting w = zx(v;) into (3.5) and taking into account (3.52), (3.53), we get

/{Zy]Diul|p_2DiulDizk(ul)} da:+/Fl(ul) 2 (uy) dx
Q Q

=1

< / ldz+1fi = flog. (3:56)
{Jw| >k}

We denote by I ; the first integral in the left-hand side of (3.56). In view of the
definition of the function z

VseR (|s| <k or |s| >2k) = |2/(s)| =0. (3.57)
Using (3.55) and (3.57), we establish that
1 Uy Uy -
I, = / d(= )T (— v|DwlP p| dx. 3.58
Uk S thu<oky [ <k> ! (k:) {; [ Diul }] (3.58)

From the property of the truncated function and our condition 2/(s) signs > 0,
Vs € R, it follows that almost everywhere in {k < |u;| < 2k},

(3)7 () == () ()

Taking into account this fact and our condition (3.58), we deduce that

0.

WV

I, > 0.
This and (3.56) imply
/ Fi(ur) z(owg) de < / Flde + 1= fllse, (3.59)
Q {lu| >k}

Note that in view of (3.4) and the definition of the function z;, we have
Fy(u)zk(u) = 0 a.e. in €,
and in view of (3.54), we get
Fi(w)zy(w) = [Fi(w)|  ae in {|u| > 2k}

Then
| A@aar> [ R

{lw]>2k}

Finally, assertion (3.50) is derived from the latter inequality and (3.59).
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Next, we fix an arbitrary € > 0. It is clear that there exists €1 > 0 such that
for every measurable set G C 2, meas G < €1,

[1ntds<e [ nlgtu)lde <
G G
We fix k € N such that the following inequalities hold:
c3k™P < ey, (3.60)

As h € L'(Q2), we infer that the function h (g(2k) — g(—2k)) belongs to L(Q).
Hence, there exists €9 > 0 such that for every measurable set G C €2, meas G <
€2,

[ bl (a(2k) = g(=21) do < =
In view of (3.49), there exists a measurable set 7 C €2 such that
meas(2 \ 1) < min(eq, e2), (3.61)

and Fj(u;) — hg(u) uniformly in ©;. Then there exists L; € N such that for
every l e N, [ > Ly,

| 1Fitw) ~ hyw]ds < < (3.62)

Q

Besides, in view of (3.3), there exists Ly € N such that for every | € N, [ > Lo,
[he = bl <& (i = fllpiq) <e (3.63)
Now fix [ € N, [ > max(L1, L2). Using (3.61) and (3.62), we obtain
| Fi(ur) = hg(uw)| L1

/ |Fl(ul)|d$+/ |EFy(uy)| dx + 2e.  (3.64)
{lw|>2k} (N\Q1)N{|ug| <2k}

N

By virtue of (3.11) and (3.60), we get meas{|w;| > k} < e;. Then

/ |fldz < e. (3.65)
{l] >k}

From (3.50), (3.63) and (3.65), we deduce

/ |Fy(w)| da < 3e. (3.66)
{lnl>24)

In view of the definition of the function Fj, we have
[Fi(w)| < |h| (9(2k) — g(=2k)) a.e. in {|u| < 2k}. (3.67)

According to the (3.61), we find

| Whlo(zh) - g(-2k)) dz < (3.68)
o\
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From (3.67) and (3.68), it follows that

/ Byl do < e. (3.69)
(\Q)N{|w| <2k}

Using (3.64), (3.66) and (3.69), we infer
[ 1 (ur) — hg(u)|| 1) < 6

Therefore, ||Fi(u;) — hg(u)|[1(q) — 0. Assertion (3.48) is proved.
Step 9. Let w € Wl’p(y, Q)N L*(Q), k> 1. Now we show that

/ Z v |6;ulP26;u DTy (u — w) da
iz
+/hg( ) T (u — w /ka u—w)dz. (3.70)
Q

Put
H={lu—w| <k}, Hoy={u—w|=k},

and let for every [ € N,
Hy = {|lu —w| <k} \ Ho, Ej={|lu—w|<k}nH.

First of all, we prove that for every function ¢ € L'(Q),

/ goda:%/ pdx. (3.71)
H, H

Indeed, let ¢ € LY(Q). For every j € N put
HO = {u—w|<k—1/j}, A9 ={ju—w| > k+1/j}.
We have
meas (H \ H(j)> — 0, meas ({]u —w|>k}\ ﬁ(j)) — 0. (3.72)

We fix an arbitrary € > 0. In view of the property of Lebesgue integral absolute
continuity and (3.72), there exists j € N such that

/ o dz < /4, / o dz < /4. (3.73)
H\H) {Ju—w|>k\H)

Moreover, in view of absolute continuity of Lebesgue integral, (3.28) and Egorov’s
theorem, there exists a measurable set ' C  such that

/Q\Q/ lpldx < /4, (3.74)



72 Yuliya Gorban and Anastasiia Soloviova

w — u  uniformly in Q. (3.75)

Assertion (3.75) means that we can find |y € N such that for every [ € N, [ >
lp, and z € €,
lug(z) —u(x)| < 1/3. (3.76)

Let L € N, 1 > lp. From (3.76), it follows that
(HU) \ Hl) N =0, {lu—w <k}nHDNQ =0

Then

H\H < (H\ED) U@\ ), HA\HC ({u-wl >k \HD)U(Q\2).

These inclusions, (3.73) and (3.74) imply that

/ ol de < 2/2, / ol dz < /2.
H\H, H\H

‘/ <pd:v—/ pdx
H; H

The latter estimate means that (3.71) is true.
Further, put

Hence,

<e.

n
ki =k+[lwl ey, ©1= Y v|DiTk 11(w)[">DiThy 1 (u) Diw,
i=1
and for every [ € N,

n

dr=Y_ v|Dal?,

=1
n
Sl, = / { 1% [\Diul|p_2Diul — |DiTk1+1(U)|p_2DiTkl+1(u)] Diw} de‘,
H L=
n
S/ = / { Z v|Dyw|P~?Dyw [Diuy — Diw]} dx.
Ey

=1

We fix an arbitrary [ € N. In view of (3.5), we have
/ Z v \Diul ’p_2Diul DiTk(ul — w) dr = / (fl — Fl(ul)) Tk(ul — 'LU) dz. (3.77)
0 0

Taking into account (2.1) and the fact that for almost every x € Q and every
£, eR" E#£L,

n

> v@) [lGIP26 — (€12 (& — &) >0,

=1
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we infer

/ { Z v | Dyw|P~? Dy DT (uy — w)}daz
Q

=1

n
= / { Z v |Diul|p_2Dl'ul [Diul — Dzw}} dx + Sl”'
H;

i=1
From this inequality and (3.77) we obtain

n

/ {ZMDW}CM / {Zu|Diul|P—2DiulDiw}daz
Hl Hl

=1 i=1
+ / (fi — Fi(w)) T (w; — w) da — Sl//-
Q

Hence, for every [ € N,

Yrdz < / (fi = Fi(w)) Ti(w — w) dx + / prdz+ S-S/ (3.78)
Hl Q Hl

Note that by virtue of (3.3) and (3.28), we get f; Tx(u; — w) — fTr(u — w)
strongly in L'(Q). Therefore,

/ J1 T (wg — w) d:c—>/ fTi(u—w)dz. (3.79)
Q Q
Besides, in view of (3.48) and (3.28), we obtain
Fi(z,w) Tp(u — w) = (f — F(x,u)) Ti(u — w) strongly in L'(Q).
Hence,
/ Fi(w) Ty — w) da — / ha(u) T(u — w) da. (3.80)
Q Q
Asu e ';'Lp(l/, Q), then we have Ty (u) € V(Efl’p(y, Q). Besides, w € VCI)/LP(V, Q).

From two latter inclusions and the Young inequality, we imply ¢1 € L*(£2). Thus,
using (3.71), we deduce that

/ gpldsvﬁ/ @1 dx. (3.81)
H, H

S; — 0. (3.82)

Now we prove that

Indeed, let € € (0,1). In view of the property of Lebesgue integral absolute
continuity, (3.28), (3.46) and Egorov’s theorem, there exists a measurable set
1 C Q such that

/ p1]dz < e, (3.83)
O\
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u; — w  uniformly in €y, (3.84)

n n
Z v|Djuy ]p_zDiul Dyw — Z v léiu]p_zéiu Dyw  uniformly in Q;. (3.85)
i=1 i=1

Assertion (3.84) means that we can find lp € N such that for every I € N, [ > I,
and x € 1,
lug(z) — u(z)| < e. (3.86)

Moreover, in view of (3.85), there exists [; € N such that for every [ € N, [ > [y,

Jh

Let [ € N, I > max(lo,l1). As w € L>(Q), there exists a set E CQ, measE =
0, such that for every x € Q\ E we have |w(z)| < ||w|[ze(q). From this fact
and (3.86), it follows that (H; N 1)\ E C {|u| < ki + 1}. Using this inclusion,
Proposition 2.3, and (3.87), we obtain

n n
Z v |Diul|p_2Diul D;w — Z v |5iu|p_25iu D;w
i=1 i=1

dr < e. (3.87)

n
/ Z v |Djuy ]p72Diul Dyw — 1| dr < e.
Hlﬂﬂl i=1
The latter inequality and (3.83) imply that
n
1S < 2¢ + Z/ v| Dy [P~ | Dyw] da. (3.88)
i=1 H\

Taking into account the Hélder inequality, an inclusion H; \ E C {|u| < k1},
(3.6) and (3.83), we establish that for every i € {1,...,n},

/ v |Diul|p_1 |Dzw\ dr < (Clkl + 1)5.
H\y

From this and (3.88) we deduce
|S]] < 2e +n(c1ky + 1)e.

Thus, (3.82) is true.
Further, we show that
7 — 0. (3.89)

It suffices to take meas Hy > 0. Let i € {1,...,n}. Asu € T'P(1,Q) and w €

WP (v, Q) N L>(Q), by virtue of Proposition 2.4, we have u —w € T P(v,Q).
Hence, from Proposition 2.3 it follows that

DiTy(u —w) =0 a.e. in Hy. (3.90)
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On the other hand, for almost every x € Hy, the inequality |u(z)| < k1 + 1 holds.
So, Ti(u — w) = Tk, +1(u) —w a.e. in Hy. Therefore,

D,Ty(u —w) = DT, +1(u) — Dyw a.e. in Hy.

Then, taking into account (3.90), we get D; T}, +1(u) = D;w a.e. in Hy. This and
Proposition 2.3 imply d;u = D;w a.e. in Hy. From this result and (3.32) we infer
that for every i € {1,...,n} D;u; — D;w a.e. in Hy. Hence,

n
Z v ]Diw]p_zDiw [Dju; — Dyw] — 0 a.e. in Hy. (3.91)
i=1
Next, we put

n

Y2 = Z v |D;w|P.

=1

Asw e T/(f/l’p(l/, ), the function ¢ is summable on €.

We fix an arbitrary € > 0. In view of the property of Lebesgue integral
absolute continuity, (3.91) and Egorov’s theorem, there exists a measurable set
)y C Hj such that

/ podx < €, (3.92)
Ho\Q2

Z v |Dsw|P~?Dyw [Dyuy — Dyw] — 0 uniformly in - Q.
i=1

The latter property means that me can find Iy € N such that for every | € N,
l = l07

n
/ > v|Diw[P2Dyw [Diwy — Dyw]| dz < e. (3.93)
Q2 =1
Let [ € N, [ > lp. Using (3.92) and (3.93), we infer that
n
S| < 2¢ + Z/ v|Dsw|P~t | Dy da. (3.94)
i=1 7 B\

By the virtue of the Holder inequality, (3.92) and (3.6), we deduce that for every
ie{l,...,n},

/ v |Dyw|P~Y | Dy da
E\Q

(r—1)/p 1
< (/ P2 d:r) (/ V‘Diul’pdl') < g(p—l)/p(clkﬁl/p‘
B\, {ludl<h1}

This fact along with (3.94) and an arbitrariness of ¢ implies that (3.89) is true.
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Further, let x : 2 — R be a characteristic function of the set H, and let for
every [ € N, x; : 2 — R be a characteristic function of the set H;. We have

lim y; > x a.e. in €. (3.95)

l—o00

Indeed, in view of (3.28) there exists a set Ey C 2, meas Ey = 0, such that for
every € Q\ Ey w(x) = u(z). Let x € Q\ Ey. If x ¢ H, then x(z) = 0.
Hence, x(z) < xi(x), for all [ € N. Let € H. As w(x) — u(z), there exists I; €
N such that for every [ € N, I > [3, we have |u(z) — u(z)| < k — |u(x) — w(x)|.
Then, for arbitrary [ € N, [ > [1, we get |u(x) — w(x)| < k. Therefore, z € H;
and y;(x) = 1 = x(x). Thus, in any case we have y(z) < lim y;(x) and assertion

l—o0
(3.95) holds.
From (3.95) and (3.32) it follows that

n

lim (¢x;) > ZV‘(SZ‘UVDX a.e. in Q. (3.96)

l—00 i—1

Using (3.78)—(3.82), (3.89), Fatou’s lemma and (3.96), we establish that the
function (> ; v|d;ulP) x is summable in © and

/Q{i”|5i“|p}xd$</Q(f_hg(u)>Tk(U—w)div+/H<,01dx.

=1

From the latter inequality and Propositions 2.3 and 2.4 we obtain (3.70). From

this fact, an inclusion u € T1P(1, ), and when the conditions (i), (ii) of Defi-
nition 3.1 are satisfied, we deduce that u is an entropy solution to the Dirichlet
problem (1.1), (1.2). O
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EnTpormiiini po3B’sa3ku 3agadi ipixje ajs mesakmx
HEJIIHIMHUX eJIINTUYHUX BUPO/I2KEHUX PIBHAHBL APYyTroro
MOPSJIKY
Yuliya Gorban and Anastasiia Soloviova

Y pobori mocaimkeno po3s’s3uicTs 3amaqi Jipixie 718 MomepHOro He-
JIHIHHOTO eJIINTUYHOIO PIBHAHHS JPYrOroO IOPSJIKY 3 130TPOIHUMH 1 BHU-
POJRKEHNMH (38 He3aJIeXKHUMU 3MiHHUME) KoedilieHTaMu, MOJIOIIIM [Je-
HOoM Ta L'-mpaBoro gacTuHoo. BCTAHOBIIEHO YMOBH iCHYBAHHS eHTPOIIHOTO
PO3B’S3Ky PO3IVISHYTOI 3aadi.

Kmo4osi croBa: Bupomzkeni enintuuni pisusiuns, L'-npasa uacruna, 3a-
nada Jlipixie, eHTpomiiHuil po3B’d30K, iCHYBaHHSI PO3B’A3KiB
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