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In the paper, we derive a rich hierarchy for the Kaup system with a self-
consistent source in the class of periodic functions. We discuss the complete
integrability of the constructed systems that is based on the transformation
to the spectral data of an associated quadratic pencil of Sturm-Liouville
equations with periodic coefficients. In particular, Dubrovin-type equations
are derived for the time-evolution of the spectral data corresponding to the
solutions of any system in the hierarchy. Moreover, we pick a particular sys-
tem of the hierarchy and demonstrate the benefits of integrability by proving
global existence of solutions for the Cauchy problem and by providing an
explicit solution.
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1. Introduction

Our goal is to construct a hierarchy for the Kaup system with a self-consistent
source in the class of periodic functions that can be integrated via the inverse
spectral method. The Kaup system [20] is used to simulate the propagation
of waves in shallow water. Different techniques were used to construct its so-
lution [26,31-33]. In [6], the authors presented the Kaup system with a self-
consistent source and showed its integrability by using inverse spectral method
of the quadratic pencil of Sturm—Liouville equations. The corresponding inverse
spectral problems were solved in [1,2,11-15]. For a discussion on the relevance
and applicability of the nonlinear evolution equations with self-consistent sources
we refer the reader to [3,5,7-10,17,18,21-23,27-30, 3436, 38,41, 42]. In [19], a
method for constructing a hierarchy for the Kaup system without a source was
presented in the class of “rapidly decreasing” functions and their complete inte-
grability was shown using the inverse scattering transform for the one-dimensional
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Schrédinger equation with an energy-dependent potential. In recent years, hier-
archies for soliton equations with self-consistent sources were studied for both
physical and mathematical reasons in [4, 16,24, 25,37,39,40].

In this paper, we make a rather general approach for systems that can in
principle be integrated by the inverse spectral transform method for the quadratic
pencil of Sturm-Liouville equations with periodic coefficients. This approach
leads to a rich hierarchy of systems (2.1)—(2.5) that is indexed by positive integers
N and contains additional parameters. In particular, the classical Kaup system
is contained for N = 1. Our main result, Theorem 5.1, provides for all systems in
the hierarchy Dubrovin-type equations for the spectral data that correspond to
their solutions. The advantages of having an integrable system are well known.
It allows, for example, to prove global existence results for the Cauchy problem, a
notoriously hard problem in the theory of nonlinear partial differential equations.
Also, it makes the construction of large families of explicit solutions possible that
are useful for modeling physical phenomena. And last not least, it is a viable
tool for computing solutions numerically as Dubrovin-type equations are well-
behaved and the inverse spectral transform is explicit due to trace formulas.
We demonstrate part of these advantages by considering a particular system
that was already constructed in [19, (5.2)] in the scattering case by an entirely
different method and that we can reproduce in our hierarchy. We show global
existence for the Cauchy problem for a large class of initial data using in particular
trace formulas. Moreover, we present an explicit non-trivial solution that can be
expressed in terms of the Jacobi elliptic functions by considering the two-gap
case.

The paper is organized as follows. In Sections 2 and 3, we give the formulation
of the Cauchy problem considered and provide some basic information about
the spectral theory of the quadratic pencil of Sturm—Liouville equations with
periodic coefficients. Sections 4 and 5 are devoted to constructing the hierarchy
for the Kaup system with self-consistent sources and to deducing the equations
that govern the evolution for the corresponding spectral data. In Section 6,
some conclusions from our main result given in Section 5 are collected. We
then turn to a specific system in the hierarchy with N = 2. Section 7 proves
global existence of solutions for this system for a rather general class of initial
data, where some arguments, in particular, the application of the Picard-Lindel6f
theorem are moved to Appendix. Section 8 contains the construction of an explicit
non-trivial solution that can be expressed in terms of Jacobi elliptic functions.

2. Formulation of the problem

For any integer N > 1 we consider the system of equations with a self-
consistent source

1 1
e = JCN-1~ 4CN-1 — 5d eN-1 = 2pcly —plen
(o)
+ D ar(®)s(m A ) (WP (2, Ak, ) (2.1)

k=—00
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qt = QC% - 2(]0?\7 - q/CN

o)
+2 ) ap(t)s(m, Ay t) {=path® (@, A t) + (A — 20) (V7 (2, Ak 1))o | (2:2)
k=—0o0
in the class of real-valued w-periodic (with respect to the spatial variable )
functions p = p(z,t) and ¢ = gq(z,t) which satisfy the regularity assumptions
p(x,t), qlz,t) € C2NTHt > 0)NCL(t > 0)NC(t > 0)

and the initial conditions

p(x,t),—g = po(x), q(z,t)|,—g = qo(z). (2.3)

Here po(),qo(z) € C*N*H1(R) are given real-valued 7-periodic functions which
satisfy the condition given in the authors’ previous work [37]. The functions
cn—1 =cn—1(z,t) and ey = en(z,t) satisfy the recursion relations

Cy = do(t),
c1 = peo + di(t),
1
Ch="7 [¢h_o — 2qcr—2 — 4pci_1]
1 x
+ 2/0 [2pc) 1 + qch_s) dx +di(t), k=2,3,...,N, (2.4)
where the functions di(t), k = 0,1,..., N, are parameters of the construction

and we only require their continuity. Varying N, we obtain the hierarchy for
the Kaup system with a self-consistent source (2.1), (2.2) that is advertised in
the title of this paper. In system (2.1), (2.2), the functions ay(t), k € Z, can
be chosen freely within the class of real-valued continuous functions having the
uniform asymptotic decay ap = O (1 / k2), k — Zoo, thus providing uniform
convergence of the series in equations (2.1), (2.2). We denote by 14 (x, A\, t) and
Y_(x, A\, t) the Floquet solutions (normalized by the condition ¥4 (0, A, t) = 1) of
the quadratic pencil of Sturm—Liouville equations

T\ty=—y" +qy+22py— A%y =0, z€R. (2.5)

One can show that ¢4 (z, A\g, t) = ¥_(x, A, t) =: ¥(x, \g, t) with A\; denoting the
zeros of the function A2()\) — 4, where A(\) = ¢(m, A\, t) + s'(m, A\, t). As usual,
we write c(z, A\, t) and s(x, A, t) for the solutions of equation (2.5) satisfying the
initial conditions ¢(0,\,t) = 1, ¢(0,\,¢t) = 0 and s(0,\,t) = 0, §'(0,\,t) = 1,
respectively. Using the expression for the Floquet solutions, one may derive the
identity

S(7, Ay )02 (T, Mg, 1) = s(m, A, £, 7), (2.6)

where s(m, A, t, T) is the solution of the quadratic pencil of Sturm-Liouville equa-
tions with coefficients p(x + 7,¢) and g(z + 7,t) satisfying the initial conditions
s(0, A\, t,7) =0, §'(0,\,t,7) = 1.

The aim of this work is to provide a procedure for constructing the solu-
tion (p(z,t), q(x,t), ¥ (xz, \g,t)) of problem (2.1)—(2.5) using the inverse spectral
theory for the quadratic pencil of Sturm-Liouville equations (2.5).
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3. Preliminaries

For the sake of completeness, in this section, we summarize some facts from
the inverse spectral theory of the quadratic pencil of Sturm—Liouville equations
(see [1,2,11-15]).

The boundaries A, of the spectrum of (2.5) and the spectral parameters &,,
oy, of the quadratic pencil (2.5) are defined as in [37]. For the solution s(x, \, t),
the equality

s(my A\, t) =7 H gk(t)k_/\ (3.1)

k=—00

k0

is fulfilled.

If we consider p(z + 7,t) and g(x + 7,t) in (2.5) instead of p(z,t) and q(x,t),
then the spectrum of the new problem is independent of the parameters 7 and ¢,
but the spectral parameters are. From the z-periodicity of p and q it follows that
the spectral parameters are m-periodic in 7. In addition, the spectral parameters
satisfy the system of Dubrovin differential equations

%i” =2(—1)"Lo, sign(n)\/(&n — Xan_1)Aan — En)hn(E), n € Z\ {0}, (3.2)

where

(&n — Mag—1)(En — A2k)
(gn - 5]4)2

ha(€) = hn(o 6, 6ry) = (G = A1) = o) T

k#n,0

The system of Dubrovin equations (3.2) and the following first and second
trace formulas:

p(Tat = @ + k_z (W - gk(Tv t)) 5 (33)
P
B (A1)? + (Xo)?
q(7,t) + 2p*(7,t) = —
e ) (3.4
e

provide the basis for solving the inverse problem.

4. Constructing a hierarchy for the Kaup system with a self-
consistent source

In this section, we present our method for constructing a hierarchy for the
Kaup system with a self-consistent source using the inverse spectral theory of the
quadratic pencil of Sturm—Liouville equations with a periodic potential.
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We consider the system

Dt :Hl[paQ]+Gl($’t)’ (4 1)
qr =Hz[p, q] + Ga(x, 1) .
and the initial condition
p(x,t),—g = po(x), q(x,t)],_y = qo(x). (4.2)

Here p = p(x,t) and ¢ = g(x,t) are sufficiently smooth functions that are m-
periodic in z. The terms H[p, q], Hz2[p, q] depend polynomially on p and g. The
aim is to find the functions Hi[p,q| and Haz[p,q] such that the Cauchy prob-
lem (4.1), (4.2) is completely integrable in the framework of the inverse spectral
problem of the quadratic pencil of Sturm-Liouville equation (2.5) with periodic
potentials p(z,t) and ¢(z,t).

Let y,,(x,t) be the normalized eigenfunction of the Dirichlet problem for equa-
tion (2.5) corresponding to the eigenvalue &, = &, (t). Differentiating the identity

_(y;;7 yn) + (qyna yn) + an(pynv yn) - 672L =0

with respect to t, as in [37], we can get

2571 <£n _/0 py721 d]]) = /0 (Qt + 2§npt)y721 dr. (4'3)

Substituting the expression (4.1) into (4.3), we derive

2, (én — / py2 dm) = / {Ha[p, q] + 2&,H[p, q|}y2 dx
0 0
- / (Go 4+ 26,G)y2 de = Jy + Jo,  (4.4)
0
where

th%%md+%ﬂMMM%% (4.5)
Jo = /0 W(GQ + 26,G1)y2 da. (4.6)

We seek the antiderivative of the integrand in (4.5) as a quadratic form of y,, and
yl, that is,

{ay? + bynyl, + cyl,>Y = (Halp, q] + 26, Hi[p, q))y2, (4.7)

where a = a(z,t,&,), b= b(z,t,&,), and ¢ = ¢(x,t,&,) are independent of y,, and
yh. Using the equality
Yn = [q+ 2P0 — EXJyn

from (4.7), we obtain

Y2 (d' + bg + 2bpE, — bEZ) + ynyh[2a + b + 2¢q + dpct, — 2662 + 42 (b + &)
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= (Halp,q] + 26, Hilp, q))y2.  (4.8)

Comparing the left- and the right-hand sides of (4.8), we find
b=~ = 5" + el — 2n — 1),
Hy[p, q] + 2&n Hilp, q] = %C’” +2d (6% = 26 — @) — (@& + ). (49)
The functions Hi[p, q] and Ha[p, ¢ in (4.9) do not depend explicitly on &,. There-

fore we seek for c(z,t,&,) in the form

N

c(a,t, &) =Y el ey ", (4.10)

k=0
Putting (4.10) into (4.9), we obtain

Halp, q) + 26, Hy[p, q) = 2¢(&N 1 + [2¢) — dpchy — 2p/ o)l !

N-2
1

+ Z [QC'k" — 2qc}€ — qlck - 4P0;g+1 - 2p/0k+1 + 202:+2] r]:]ik
k=0

1 1
+ [20'](’,_1 — 2qc’N_1 — q’cN_1 — 4pc’N — 2p/cN} &+ ic% — 2qc’N — q’cN.

Comparing the left- and the right-hand sides of the last equality, we find

ch =0,
/ /
C1 = P Co,
1
Chya = —1[0’/;/ —2q'cy, — 4qc), — 4p'ck1 — 8pch 4], k=0,1, ..., N =2,

1 1
Hilp,q] = 10%71 - qC§V71 - iq/CNfl — 2pc§\; —plen,
/1

1
Hs[p, q] = 5CN ~ 2qcy — q'en.

Next we consider J; of (4.6). As we show in Section 5 below, the choices

Gi(z,t) = > ar(t)s(m, e, ) (0 (2, Ak, 1))
k=—o00
Go(z,t) =2 Y ap(t)s(m, A, t) {—path®(@, Ay t) + Ak — 2p) (V2 (2, Ak 1)) |
k=—00

allow us to determine an explicit antiderivative for the expression Go + 2£,G1
that appears in the definition of Js.
Now consider the system of equations

1 1

bt = 16%71 —qy_1 — §q/CN—1 —2pcly —plen + Gi(z,t)
1

a0 = Ll — 20y — o+ Gali ),

(4.11)
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where the functions ¢, = cx(x,t), k = 0,1,..., N, are expressed in terms of the
functions p = p(x,t) and ¢ = q(x,t) as follows: choose continuous functions dj =
di(t), k=0,1,...,N. Then the ¢; are defined recursively by

co = do(t),
c1 = peo + di (1),
1
cLp = —1[02_2 — 2qcp—o — 4pci—1]
1 X
+ 2/0 [2pc)_ + qch_s) dx + di(t), k=2,3,...,N. (4.12)

Varying N, we obtain the hierarchy for the Kaup system with a self-consistent
source (4.11). Evaluating (4.12) up to k = 3 gives

co = dp,
c1 = pdp + dy,

1
C2 = 5[(] +3p* — p*(0,1)]do + pdy + da,

1
¢3 = = [p" = 6pg — 10p” + 2pp™ (0, £) + 2p(0,1)q(0, 1) + 4p°(0,1)]do

+ %[q +3p® — p?(0,8))dr + pda + ds.
Observe that the integral in the definition of ¢j (4.12) has disappeared since one
may find explicit antiderivatives. We conjecture that this is true for all ¢; and
we have validated this conjecture up to k = 6. This implies in particular that the
assumption on the periodicity of ¢ stated in Theorem 5.1 below is satisfied for all
N <6.

Clearly, (4.11), (4.12) yield a wealth of new equations that constitute a hierar-
chy for the Kaup system with a self-consistent source. Let us give two particular
simple examples contained in this rich family of equations. We get the classical
system of Kaup equations with a self-consistent source for N =1, dy = 2, d; =
0:

{pt = —6pps — ¢z + G1(, 1),

Gt = Pazx — 4P2q — 2pqy + G2($7 t),
and for N =2, dy = 4, d; = 0, da = 2p*(0, 1):

= Pzaz — Opzq — 6 x_302;g+G x,t),
{pt P p2q — 6pg p°p 1(x,t) (4.13)

Gt = Graz + OPPrez + 18Pepre — 69qe — 24pgp. — 6p2Q$ + Go (ma t)'

Note that for p(z) = 0 the last equation reduces to the Korteweg-de Vries equa-
tion with a self-consistent source. Moreover, in [19] a hierarchy of completely
integrable systems was constructed for the class of rapidly decreasing functions
by a different approach. Their special case (5.2) agrees with (4.13) without source
terms if one identifies Q(t,z) = 2p(—t,x) and U(t,z) = q(—t, ).
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5. Main result

The main result of the paper is stated in the theorem below.

Theorem 5.1. Suppose p(z,t), q(x,t) and p(x, A\, t) solve problem (2.1)-
(2.5) and assume that the function ¢ defined in (4.10) is w-periodic in x. Then
the spectrum of the pencil (2.5) does not depend on t, and the spectral parameters
En(t), on(t), n € Z\ {0}, satisfy an analogue of the system of Dubrovin equations

En(t) = 2(=1)" (1) sign(n) v/ (€a(t) — Azn—1)A2n — &(t))

3 B (&n(t) = Aok—1)(§n(t) — A2k)
X | ) = A0 )\O)kgo (&n(t) — &k(1))?

N O[k 7[' /\k, )
x 4> (0, )6 + Z _/\k : (5.1)
k=0

k=—o00

The sign o, (t) = £1 changes at each collision of the point &, (t) with the bound-
aries of its gap [Aan—1, A2n)|. Moreover, the following initial conditions are fulfilled:

En(t)]i=0 = 52, on(t)];=o = U?w n € Z\ {0}, (5.2)

where €2, 6%, n € Z\ {0} are the spectral parameters of the quadratic pencil of
Sturm—Liouville equations corresponding to the coefficients po(x) and qo(x).

Proof. Let y,(x,t) be the normalized eigenfunction of the Dirichlet problem
for equation (2.5) corresponding to the eigenvalue &, = £, (t). It is easy to see
that

5(2,€nlt), 1), (5.3)

n(z ) = Yu(t)

where

™
) = [ Pttt do
0
Due to (4.10) and (4.12), we have
1

qr + 2&npe = 50'" +2¢ (&2 — 2p&, — q) — (260 + ¢) + Go +26,G1. (5.4)

Substituting the expression (5.4) into (4.3), we derive the following equality:

- " 2 "1 /" 2 / / 2
20 | &n— [ pypdz) = 3¢ 26 = 206 — q) — (206 + ) Y da

0 0
™
+ / (Gy +26,G1)y2 dx = I + Jo, (5.5)
0

where

(1
I = /O {2c”’ +20 (&7 — 2p€n — q) — (2060 + Q’)} Yn 42,
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and Jy is given by (4.6). We now calculate I. Using the identity

qQYn = ggyn + yg — 28nDYn,

it follows from (4.7), the discussion thereafter, and from the periodicity of
c(x,t,&y,) that

™

1
I = { [20” + (€2 — 20&, — q)| Y2 — ynyl, + cyif}
0

= ¢(0,t,&,) [y, (m,t) — v, (0, 1)]. (5.6)

Now we calculate Js:

Jo = / (Go + 2¢,G1)y2 dx
0

= > os(m, A t) /0 { 2Py} + 2(6n + Mk — 20)yn (V7)o } dz,  (5.7)

k=—o00

where ¥ = ¥(x, Ak, t). It is easy to see that

—2 /0 Payatbide + 2 /0 (& + Mo — 20) Y2 (VE) 2 da

1 12 72
S o U RN

Substituting (5.8) into (5.7), we arrive at

=3 W[%z(mt)—yzz(oi)k (5.9)

k=—o00

Equation (5.5) together with relations (4.10), (5.6), and (5.9) yield

%, (sn— [ v ) {chm }[yf(mt)—yﬁo,w]

+ Z ol _st >[y;2(ﬂ,t)*y;2(0,t)]. (5.10)

k=—o00

Due to (5.3), the last equality can be written as
26,(0) (00030~ [ .60 000

N
=Y a0 if’“} (5 (. &n(t),1) — 1]

0

k=
+ { Z W} [5/2(7Ta§n(t)’t) - 1]'

k=—o00
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=

Using the equality (see [15]):

26,(0173(0) ~ 2 [0l 050,600 6)do = o . 50,0 20D,

we obtain

()00 _ e Jln S
alt) {Z_ZO (0,1) }( (m &a (), ) sf<7r,sn<t>,t>>

! { 2 (?(_f”} (60~ e ) @)

Now, we get

(m 6000~ sy ) (2T :0)
e <>W ) (Zms00)
= 2(=1)"0 (1) sign(n)v/(En(t) — Aan_1)Aan — &n(t))

_ _ (€n(t) — Aag—1) (§n(t) — A2k)
X J (fn(t) A—l)(gn(t) )‘0) Iﬁl:Im0 (fn(t) _ gk(t))Z ’

(5.12)

Here we also used the equality

sign {Z 11 &t ; alt) } = (—1)"sign(n).

k#n,0

From (5.11) and (5.12) we conclude (5.1).

We notice that if instead of Dirichlet boundary conditions we consider periodic
or anti-periodic boundary conditions, then equation (5.10) remains valid and we
can deduce A,(t) = 0 for all n € Z. Hence, the spectrum of problem (2.5) does
not depend on the parameter ¢, and the theorem is proved. ]

6. Remarks

Remark 6.1. Theorem 5.1 provides the method for solving problem (2.1)—
(2.5). It is the following one.

(i) Solving the direct spectral problem for (2.5) with po(x + 7) and gqo(x + 7),
the spectral data A\, n € Z, €2(7), 02(7), n € Z \ {0} are obtained.

(ii) Using the result of Theorem 5.1, we find the solution of the Cauchy problem
En(T,1) li=0 = E0(7), on (T, 1) }t:(] =02(7) ,n € Z\{0} for the Dubrovin-type
system (5.1).
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(iii) Finally, by using trace formulas (3.3) and (3.4) we obtain the expressions for
p(7,t) and q(7,t). After that the Floquet solutions ¥ (x, A, t) of equation
(2.5) can be determined.

It is worth noting that all remarks given in authors’ previous work [37] retain
valid for system (2.1)—(2.3).

7. Discussion of a special example for N = 2 in system (4.13)

In this section, we show that system (4.13) has a global spatially 7-periodic
solution for any initial data pg, go that are m-periodic, belong to C®(R), and
satisfy the condition given in [37]. Recall that system (4.13) was derived from
the general construction by setting N = 2, do = 4, d1 = 0, da = 2p*(0, 1).

For this data, the system of Dubrovin-type equations (5.1) for problem (2.5)
with coefficients q(z + 7,t) and p(x + 7,t) takes the form

% = 2(*1)11071 Sign(n) \/(gn - >\2n71)(>\2n - fn)
o - (‘fn - >\2k—1)(§n — )\Qk)
X (Sn )\—1)(571 )\O) k}:‘[m() (fn — fk)2
X {Co(T,t)ﬁi +c1(7,t)én + ca(T,t) + i ak(t)g(é i’: t7) } (7.1)
k=—o00 n

and satisfies the initial condition

5“(7—7 t)‘t:O = 52(7—)7 O'n(T, t)|t:0 = 0-2(7—)’ ne’zZ \ {0}7 (72)
where &, = &,(7,t), 05, = op(7,1).
Next we explain how co(7,t), c1(7,t), co(7,t) can be expressed through Ay and
&n(T,t). Due to (4.12), we have
00(7-7 t) = 47 1 (7—7 t) = 4]7(7—7 t)a 02(7-7 t) = 2[Q(T7 t) + 3p2(7-7 t)} (73)

From [15] we take the following trace formulas for problem (2.5) with coefficients
q(x + 7,t) and p(z + 7,1):

Am(T, t) _ (Afl)m + ()\O)m + io: (()\Qk‘—l)m + ()‘Qk)m - gﬁ(T,t)) 7

Then A, (7,t) satisfies the recursive relations:

Ai(r, 1) = o lono(r, 1) — o20(r, 1)
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m—1
An(rt) = —{ (;)j o1 1(18) — (— 1)y (1, 8)] Ay (728)
j=1
+ (ng [o1m 1 (7,8) = (—1)™" g1 (7,1)] } m=23,... N, (7.5)
where

Ov,0 (Tv t) = _Wup(Ta t)7

j:1727"'aN7 V:172; wlzi, w2:—i.
The recursion leads to the following explicit formulas:
A1(7—7 t) = p(T, t)?
Do(7,t) = 2p%(7, 1) + q(7, 1),

3
AS (T’ t) = _Zp‘r‘r (T’ t) + 3p(7_a t)Q(T’ t) + 4p3 (Ta t)a

1 )
A4 (T’ t) = —5(]7—1- (7—7 t) - 4p(7', t)pTT (7—7 t) - 5]772- (T’ t)

+ 8p% (1, t)q(7,t) + 8p*(7,t) + ¢*(7,1). (7.6)

Taking into account (7.6) and (7.3), co(7,t), c1(7, ), c2(7,t) can be expressed
by Ar and &,(7,t) as follows:

00(7_7 t) = 47
) = A s §5 (Rt g ) |
B0

a(mt) = (A1)?+ (M) + Y [Qar-1)” + (aw)® — 268 (7, 1)

e

2
A1+ A 0 (Dop_1 + A
+2 % + k_z (2’“22’“ — &l t)) ] . (7.7)
K20

The Dubrovin-type system (5.1) is then given by
én = (-1)"on Sign(n)Q\/(gn — Aan—1)(A2n = &n)hn () gn(§)

with

(En — Aor—1)(En — Aak)
(6n — &)? ’

k#n,0

hn(€) = J (&= A1) —20) T1
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A1+ Ao Dokt + Aok
2 + Z < 9 - gk) ]gn

gn(€) = {4&% +4

k=—o00
k40
+ (A1) + M)+ D [Aae1)® + (M) — 267
i
Ao+ A N Dap1 F A ?
—1 0 2k—1 2k
+2 2+k_2 (2—&;)]
P

a(t)s(m, Ak, t,7)

+ kz_joo N } (7.9)

Suppose for a moment that for (7,t) € R? there exist &,(7,t), m-periodic in 7 that
satisfy not only (7.1), (7.2) but also (3.2) so that for any ¢t € R we can reconstruct
p(7,t), q(7,t) from trace formulas (3.3), (3.4) (see also (7.6)). We now show that
such defined p and ¢ indeed solve system (4.13) as advertised at the beginning
of this section. This complements the statement of Theorem 5.1 as we then do
not need to assume that a solution of (4.13) exists. Comparing the system of
Dubrovin equations (5.1) and (3.2), we obtain

%ik =— {4&3 + 4p(7, )&, + 2[q(7, 1) + 3p* (7, 1)]
a;(t)s(m, )\Z,t 7) | O
+Z_z_:oo §k— }87, ke Z\{0}. (7.10)

Taking the derivative of the first trace formula (7.6) with respect to ¢ and using
equalities (7.10) and (7.4), we find

N %
bt - ot
k#£0
— 2 0& o 0&
=4 i 4p ==+ 2 2 =
kzzoog + Z §k + (¢+3p )k:m o
k#0 lc;éO k0
- —  a;i(t)s(m, Ai, t,7) 0
— 5. 11
+i;oo{k—zoo Sk = Ai or 71y
B k40

Differentiating Aj(7,t), Aq(7,t), As(7,t), and Ay(7,t) with respect to 7, we
obtain
oo

0
pr(T,t) = — g, (7.12)

=—00
k40
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) 6§
k
k=—o00
k#0
3 20
—zp.,.ﬂ- + 12p*p; + 3p-q + 3pg; = — Z 35/%%’ (7.14)
k=—o00
k#0

1
_5%'7'7' - 4pp7'7'7' - ngpT’T + 16qpp7’

&k,
+8p2Q‘r + 32p3p‘r +2qqr = — Z 51?5 or " (7'15)
"oz

We will justify the formal derivatives (7.12)—(7.15) in Remark 9.1 of Appendix.
Using equalities (7.12), (7.13), (7.14) and identities (2.6), (3.1), we arrive at

Pt = Prer — 6prq — 6pgr — 30p°pr + > ag(t)s(m, A, 1) (2 (7, A, 1)) (7.16)

k=—o00

Differentiating the second trace formula of (7.6) with respect to ¢ and using
equalities (7.10), (7.4) yields

= —dpp; +8 Z 3 §k+8 Z §2ﬁ+4 (q+3p%) Z ga&“
k=—o0 k=—o00

k#0 k‘;é() k#£0
§kaz 7T )\z,t 7') 8§k
E . 1
fk - or (7.17)

k=—o00

k40

Substituting expressions (7.13)—(7.16) into (7.17) and taking into account (2.6)
and (3.1), we derive (4.13).

We are left to prove the global existence of the functions &,(7,t) that solve
both Dubrovin equations (3.2) and (7.1). In Appendix, we show that for each
of the two equations the initial value problems have unique solutions that exist
globally. So we may, for example, first solve for each 7 € R equation (7.1) with
initial condition (7.2). The initial condition is w-periodic since there are the initial
data py and qp, and we therefore have m-periodicity of &,(7,¢) in 7 for free. In
order to see that the functions ¢,, defined in such a way also solve equation (3.2)
for every value of ¢ it suffices to show that the two flows commute. Let us define
the maps E and F such that (3.2) takes the form & = F(§) and (7.1) combined
with (7.7), (2.6), and (3.1) reads & = F(t,£). Note that for all n € Z\ {0} we
have F,, = —g, E,, where g,(§) = gn(t,€) is defined in (7.9). With this notation
the commutation of the 7-flow and the ¢-flow is equivalent to the identity

Ee(F(t,€) = Fe(t,§)E(E) = 0.

s

1=—00
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Computing the n-th component of this equation using the relation F,, = —g, F,
gives

> ok, Ogn
n — E+ —/—FE,FE;| =0.
> [(9 9r) o6 1t g, P

l=—o00

1£0

Since g% = 0 by (9.24) and (9.26), it suffices to show that for every | # n we

have
OE, O9n

(gn —a1) o6 o6

Next we observe for [ # n that %b;l" = gfj& due to (3.2) and (9.18). Hence the

commutation of flows is proved if we can verify

gn(tv‘£> _gl(tag) _8gn(t7£)

gn - gl agl

(7.18)

for all [ # n. To this end, we write g, = g,(Ll) + g,(f) with gg) given by (9.21).
The quadratic polynomial g,(}) is then defined implicitly via (7.9). The derivative
on the right-hand side of (7.18) is computed in equations (9.23) and (9.26) of
Appendix. A straightforward calculation using (9.21) and (7.9) shows that (7.18)
holds true. This completes the proof that the functions &, (7, t) exist globally and
that system (4.13) has a global spatially 7-periodic solution for any initial data

Po, qo that are m-periodic, belong to C°(R) and satisfy conditions of Section 2.

8. A two-gap solution for system (4.13)

In this section, we present a non-trivial solution of system (4.13) with the
special autonomous choice oy (t) = # for the source term. Here we choose the
spectral data such that only two gaps are open. More precisely, we choose the
initial data as

Ag=-1, X=1, M=2 X=4 &0)=2 0=+

and assume that all other gaps are closed.
In this case, system (5.1) has the same form as that considered in [37, 4.1].
According to this and Remark 6.1, it is easy to check that

3 — 4sn? (—339t + 37, %)

1+2cn? (—339t + 37, 2)’

81 — 156 sn? (—339¢ + 37, 2) + 72sn? (=339t + 37, 2)
(1+2cn? (—339¢ + 37, 2))°

p(T, t) =

Q(Tv t) =

are the solution to system (4.13), where sn and cn denote the Jacobi elliptic
functions.
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9. Appendix: Cauchy problem for the Dubrovin equations
(3.2) and (7.1)

Equation (3.2) is similar to equation (7.1) but simpler, because the factors g,
defined in (7.9) are just replaced by the constant function 1. It therefore suffices
to study the existence and uniqueness of solutions of the Cauchy problem for
equation (7.1). In order to simplify system (7.1), we change the variables

En = Aop_1 + ()\gn — )\2n71) sin2 $n(t), nes \ {0} (9.1)
After substituting (9.1), system (7.1) takes the form

%Z(—l)ngn(t) sign{sin x,, (t) cos z,,(t) } sign{n}h,(§)gn(t,&), n € Z\ {0}, (9.2)

where g, and hy, are given by (7.9) and (7.8). Note that the t-dependence of g,
solely enters through the coefficients ay(t) of the self-consistent term. Further-
more, we remark that when the variable &, passes through one of the endpoints
Aon—1, Aoy, of its band gap, both o,,(t) and the product sinxz,(t) cos x,(t) change
the sign. If we choose the initial conditions

€9 — Aan—1

Z :
Sl ne 2\ {0}, (9.3

2,(0) = 20 = arcsin

then o, (t) sign{sin z,(t) cos x,,(t)} = 0,,(0). Now system (9.2) takes the form

dx,
- = H,(t,x), ne Z\{0}, (9.4)

where Hy,(t,x) = (=1)"0,(0) sign(n)h,(&)gn(t,§). To study the solvability of the
Cauchy problem (9.4), (9.3), we consider the Banach space K of sequences {z €
K:x=(..,x_1,21,...), * € R} with the norm

o0
=] = Z In|(A2n — Azp—1)|zn]. (9.5)
n=—oo
k#0
Denoting H(t,z) = (..., H_1(t,x), Hi(t,z),...), the Cauchy problem (9.4), (9.3)
becomes an initial value problem for an ordinary differential equation in K:

i H(t,x), (9.6)

z(t)],eg =", 2" € K. (9.7)

The remaining part of Appendix is devoted to showing that H is globally Lipshitz
in x from which global existence and uniqueness of problem (9.6), (9.7) follows
by the Picard—Lindel6f theorem.

Recall that we have assumed po(x), go(z) € C°(R). This implies the asymp-
totics (see [15]):

a a a Ep
Aono1=n+ag+ — + — ko L (9.8)
n n n n
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+
a a a et
Mom = mag+ s S (9.9)
n o n n
where ag, k = 0,1,...,5, are constants, and (¢;),, € lo. Consequently, taking into

consideration that &, € [Aan—1, A2n], we see that infyc, o £, — | > a > 0. Using
these facts, we now deduce the estimates

Crln] < |1 ()] < Coln, 259 < (9.10)
90(O)] < Calnl?. 2O < ool pul, 010

where the constants Cj, k = 1,2, 3,4, 5, are positive and do not depend on n, m,
&, and t.

Remark 9.1. Notice that the uniform convergence of the series in (7.12)—(7.15)
follows from the upper bound on A, in (9.10) and from (9.8), (9.9).

Let us begin proving claims (9.10) and (9.11). From (7.8), we have

h%@=¢@—A4x@—ijﬁj<y+“kl 5’f)(umf’f).

et &k —&n &k —&n
k#n,0
It follows that
> Aok—1 — &k Aok — &k
h2 = (&, — A\ — n— A 14 2221 TSk 22k T Sk
0] = 2wl — o TT [t Mo 2
k#n,0
o Aok—1 — &k > ( Aok — &k >
< (& — M n—A Lt ||\ | —F
< 6 = Aol I(€ O&IL(+ il ) (1 |
k#n,0
9 < )\Qk; 1)2
< Don H e —
@ﬁ
2
< D0n2 H < AQk)\Qk_l) < Dyn?.
k=—o00
This implies
|hn(§)] < Ca|nl. (9.12)

Next we derive a lower bound on |h,(§)]. To do this, we introduce a set of indices

:{kGZ: )\2’“_)\2’9121}'
a

Observe that M is finite due to (9.8) and (9.9). Setting

ST Aoko1 — & T Aok —
A, = | I —_ | | 9.13
b Sk G —&n €n (6-13)

k#n,0 k#” 0
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we have

h2(€) = (én — A-1)(én — Xo) A B (9.14)

We rewrite A,, as follows:
An::44m1An2An37

where
Aok—1—&n
14m1 = II ;
kEZ\M §k — gn
k#n,0
Agk—1— n
e
keM\{0} "
k<n-—1
Aok—1 — n
anom T1 S
keM\{o} °F T Sm
k>n+1
1) Let k # n and k ¢ M. Then
Aok—1 — &k < Aok — Aok—1 <1,
& —&n a
Hence,
Mok—1 —&n Aok—1 —
Al =TT [Pt )= T e et
keZ\M k= Sn keZ\M k= on
k#n,0 k#n,0
Aok—1 — &k > < Aok, _)\2k1>
> 1-— 1 2=k Aekml
_>kII < gk__fn o II a
€Z\M keZ\M
k#n,0 k#n,0
Aok — Agg—1)
(=
keZ\M

2) Let k <n—1and k € M. Then we obtain

A n— A
ad= T Pgee)= TS
keM\{o} | Sk T Sm keM\{0} k
k<n—1 k<n-—1
= II <1+§’“_/\2’“> > 1.
ke M\{0} gn - gk
k<n-—1

3) Finally, let k > n+1 and k € M. Denote A = maxgeyz(Aag — Aog—1). First,
we consider the case k >n+ 1, k € M, |{ — &,| < 2A. We may write

Aok—1—&n H Aok—1 — ng,l Aop—1 — )‘,Qkfl
[ [ s Dokt = Ny T At =y
2A - 2A ’

keM*\{0} Sk = &n keM\ {0} keM
k>n+1 k>n+1
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where M* = {k € M : |{—&| < 2A} and A, ;| is chosen such that
max{Aog—2, Aog—1 — 2A} < Xy ;| < Aoj—1. In the case k > n+ 1, k € M,
|€k — &n| > 2A, one has

— Aog— — Aog— Aok — Ao 1
Sk = Aok—1 _ Sk = Ask—1 <Mk L
o6 2A 2A 2
Aok—1— n
2k-1—&n },
ék_fn 2
Aok—1 — &n 1 1
Il Fo—e > s> 1l5
keM**\ {0} keM L keM
k>n+1 k>n+1

where M** = {k € M : |§ — &,| > 2A}. It follows that

Aok_1 — Agk—1 — Ay
=TT [ag®]s e e
keM\{o} | Sk T Sn keM
k>n+1
In summary we have derived
‘An’ = ’An,l‘ ’An,Q‘ ‘An,3‘ > Ds. (9-15)
A similar reasoning yields 3
|B,| > Ds. (9.16)

Substituting (9.15) and (9.16) into (9.14), we arrive at
|hn| > C1|n]. (9.17)

Now we estimate 82"7(5).

1) Let m # n. Differentiating (7.8) readily gives

Ohn(§)
2hy, 7€,
_2Am—_n)\m_n M A7_7LA_7’L
Km0
1 7 Aokt — &) (Aor — &) —2h,
= 26— A1) (En — A =
2(5 1)(5 0)§m —&, kzl] (gk — fn)Q Em —&n
k#n,0
which implies
aggf) = E:n—(?m for all m # n. (9.18)
From the last equality and (9.12), we learn
‘6hn(§)’ _ (9] < Dy|n| for all m # n. (9.19)

agm B ‘fn _gm‘
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2) Let m = n. We introduce the notation
hi(ﬁ) = Aanv
where A, = (& — A_1)(én — Xo)An and A, and B,, are the same as in (9.13).

Logarithmic differentiation gives

oA, - 1 1 Aok—1 — &k

Ton _ A, .

06, Ln S il VD DI ra vy ey
k#n,0

From this equality and taking into account the inequality |A,| < D, we derive
the estimate

A, [Agk—1 — &l 2
< |Ap| 126, — A1 — Aol + < Dsn”.
5g, | < [Anl[2n = At =20 N =Ml =&l T
k#n
Similarly, we deduce
0B,
< Dg.
) 0 | ="
The inequalities we have obtained so far imply the estimate
OnZ| _ |04, B, + | 2B
On In 0n

Combining this estimate with (9.17) and recalling (9.19), it follows for all n, m €
Z \ {0} that

‘%”(5) < Cs|nl. (9.20)

m

Let us turn our attention to g, (t,&). For convenience, we introduce the notation

gn(t,€) = gV (&) + 9P (1, €),

where
- Ak, ;
g2 (t,€) :sz ak(t)s )én(ﬁ— A’; L) _ Z £n—Ak H & — (9.21)
- T

by equation (3.1). Of course, 97(11) denotes the quadratic polynomial (in &) that

(2)

represents g, — gn = according to (7.9). The following estimates are immediate:

GRS

9D (t,¢) ‘ — <||> lgn(t,6)] < Cyln*.  (9.22)

D and g( ). For g( ) they read

Next, we compute the derivatives of g,

9% (€) A—1+ Ao L i (A%q + Aok €k> ] (9.23)

k=—o00

k40
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for m # n and

dgs ()
= 0. .24
e, (9.24)
Thus we easily have for all m and n:
)
< . .
%, | = Dg|n||m| (9.25)
From (9.21), we calculate
a9 (t,€)
7€, =0 and
I (18 o k() TG
-2 =7 - for m # n. 9.26
P " 2 e AL T An (5.20)
i#0

Due to (9.26) and (9.25), we obtain

Om |nm)| Oém

By the construction, all D, k =1,2,...,9, and Ci, k = 1,2,...,5, are positive
constants independent of n, m, ¢, and £&. We have therefore completed the proof
of statements (9.10) and (9.11). With these estimates it follows for f,(¢,&) :=

hn(€)gn(t,€) that

5gn (¢ 5)‘ O (1) and 'W‘ < Cs|n|lm| for all m and n. (9.27)

lafn(t,ﬁ)

o€ ‘ < C|n|*|m| for all m and n. (9.28)

Denote F(s) := fn(t,n+ s(§¢ —n)) for s € [0, 1]. By Lagrange’s theorem there
exists s* € (0, 1) with F'(1) — F(0) = F'(s*) and, consequently,

69 - hn= Y. D,y

m=—00

m#£0

where 0 = n+ s*(£ —n). Keeping (9.4), (9.28) and (9.5) in view, we have

0 fn(t,0)
’Hn(t7x) - Hn(tay)| = ‘fn(tag) fn t "7 Z ' f8£fn ‘ |£m - m

m=—00

m##0

[e.e]
< Z C |nl? Im| [Aom — Azm—1] ’Sim2 Ty, — sin? ym|
m=—o00
m##0
o0

<c |n]3 Z Im| [A2m — Aom—1] [Tm — Y]

m=—o00
m#0
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=Cln* |z -yl (9-29)

Finally, this implies by (9.8) and (9.9) that

9]
1H (t,2) = H(ty)l = Y [nl[Aen = Aot | [Ha(t:2) — Halt,y)]
n=-—o00
n#0
)
<C'S Pan—danctl Inl*flz =l
n=—o00
n#0
e — el
n n
=<C Y T lz =yl = Lllz -yl
n=—o0 n‘
n#0

with

= lef — el
p=c Yy Bt
n=-—00

n#0

because (|e;} — &,,|)n € l2. This shows that H(t, ) is indeed Lipshitz continuous
in z with global Lipshitz constant L and the theorem of Picard-Lindelof can be
applied as claimed above.

the
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ITpo nmobynoBy i inTerpyBaHHs iepapxil /ijiss cucreMu

Kaymna i3 camoy3ro>keHuM J>KepejioM B KJiaci
nepiogmIHux QyHKITi
A. Yakhshimuratov, T. Kriecherbauer, and B. Babajanov

V wmiit crarTi Mu BuBOIMMO Oarary iepapxiro jist cucremu Kayrma i3 ca-
MOY3TOJI>KEHUM J[?KePeJIOM B KJtaci nepioguaaux dyHKIiit. Mu obroBoproemo
[TOBHY IHTErPOBHICTH MOOYIOBAHUX CHUCTEM, STKa 3aCHOBAHA HA TPAHCHOPMY-
BaHHI y CIEKTPaJbHI JaHi acOIiOBAHOTO KBaIPATUYHOIO IyYKa PIBHSAHDb
Irypma—JliyBluis 3 nepioguaaumu KoedinieHramu. 30KpeMa, OIepKaHO
piBusuug Ty JlyGpoBiHa Jj1sT 1aCOBOI €BOJIIONIT CIIEKTPAJTBLHAX JAHUX JIJIsT
PO3B’sI3KiB OyIb-gKOI cucTeMu B iepapxil. Kpim Toro, Ha mpuriiaji okpe-
MOI CHCTeMU 3 iepapxil MU JIEMOHCTPYEMO IIepeBaru iHTEerpoOBHOCTI, JIOBO/Is-
91 iCHyBaHHS TJTOOATIBHUX PO3B’SI3KIiB My 3aadi Kol Ta Haga09In SBHUAH

PO3B’SI30K.

KirrowoBi cioBa: cuctema piBHgIHb Kayna, iepapxis, caMOy3TrojizKeHe JTKe-
peso, KBagparwaauit nydok piBHsgHb [ITypma—JliyBisutsa, obephena cre-

KTpaJIbHa 3a7a49a, POPMYJIN CJiIiB, MepioanTHIi TOTEHITiaT
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