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This study concerns the analysis of a quasistatic frictional contact prob-
lem between a thermo-viscoelastic body and a thermally conductive founda-
tion. The constitutive relation is built by a fractional Kelvin–Voigt model.
The heat conduction is governed by time-fractional of temperature param-
eter θ. The contact is described by the normal compliance condition and
the friction is described by Coulomb’s law. We derive a variational for-
mulation of the problem and prove the existence of a weak solution to the
model by using the theory of monotone operator, Caputo derivative, Clark
subdifferential, Galerkin method and Banach fixed point theorem.
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1. Introduction

General models for contact problems with friction of a viscoelastic body can be
found in [2, 3, 18]. The mathematical model which describes the quasistatic fric-
tional contact between an electro-viscoelastic body and a deformable conductive
foundation was studied in [11]. A. Amassad et al. considered in [1] the modeling
of quasistatic thermoviscoelastic problem with bilateral contact and with a slip
rate dependent condition, they also proved the existence and uniqueness of the
weak solution and studied the regularized version of the problem.

The foundation of the theory of fractional calculus was initiated by Gottfried
Leibniz, Guillaume de l’Hôpital and Johann Bernoulli at the end of the 17th
century [9]. After the publications of Joseph Liouville and Bernhard Riemann,
several results on this theory were introduced in the middle of the 19th century,
see [17].

Among the applications of fractional calculation there is the mechanical mod-
elling of rubber-like materials. In this sense, [8,16] are cited as references for the
models that include specific materials having viscoelastic properties, where the
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fractional constitutive laws of Kelvin–Finger and the fractional model of Maxwell
are taken into account.

In [7], the authors studied a general quasistatic frictionless contact problem for
a viscoelastic body modeled by the fractional Kelvin–Voigt law and the contact
condition described by the Clarke subdifferential of a nonconvex and nonsmooth
functional.

Z. Zeng et al. [20,21] introduced a class of generalized differential hemivaria-
tional inequalities involving the time fractional order derivative operator applied
to a frictional contact problem.

The aim of the present paper is to study the solvability of a new mathematical
model for a frictional contact problem between a thermo-viscoelastic body and
a thermally conductive foundation. The novelty is in using the Kelvin–Voigt
constitutive law with time-fractional as below

σ(t) = Cε
(
C
0 D

α
t u(t)

)
+ Eε(u(t))− θ(t)M in Ω× (0, T ). (1.1)

Also, we model the Fourier law of heat conduction for a temperature field with a
time-fractional as follows:

C
0 D

α
t θ(t) + div q(t) = q0(t) in Ω× (0, T ), (1.2)

which leads to a new and more sophisticated mathematical model.
The difficulty of solving this type of problem lies in the coupling of viscoelastic

and thermal aspects with time fractional, also in the nonlinearity of the boundary
conditions, which gives us a nonlinear variational and hemivariational inequali-
ties.

We provide the variational analysis of the mechanical problem which leads to
a coupled system of time fractional and we show the existence of a weak solution.

Our main result is based on Theorem 19 from [21], the fractional Caputo
derivative, the Galerkin method and the Banach fixed point theorem.

The rest of the paper is organized as follows. In Section 2, we state the me-
chanical model of a thermo-viscoelastic fractional contact problem with normal
compliance and Coulomb’s friction. In Section 3, we review some basic mathe-
matical notations, definitions and assumptions. We derive the variational formu-
lation and present the main result of our problem. In Section 4, we prove our
main existence result. Finally, in Appendix (Section 5), we recall some results:
the Riemann–Liouville fractional integral, the Caputo derivative of order 0 <
α ≤ 1, the Clarke generalized directional derivative and the generalized gradient,
which are useful in the proof of the main result.

2. Time-fractional contact problem

We consider a body made of a viscoelastic material, which occupies an open
domain Ω ⊂ Rd, d = 2, 3, with a smooth boundary ∂Ω = Γ and a unit outward
normal ν. This boundary is divided into three open disjoint parts ΓD, ΓN and
ΓC such that meas(ΓD) > 0. Let T > 0 and [0, T ] be the time interval of interest.
The body is submitted to the action of body forces of density f0 and a volume
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heat flux of density q0. It is also submitted to mechanical and thermal constants
on the boundary. The body is clamped on ΓD. The surface traction of density
f1 acts on ΓN × (0, T ). On ΓC × (0, T ), the body may come in frictional contact
with the so-called foundation which is thermally conductive. We assume that the
thermal potential is maintained fixed of θF . The normalized gap between ΓC ×
(0, T ) and the conductive foundation is denoted by g.

To simplify the notation, we denote by Sd the space of the second-order sym-
metric tensor on Rd, “ · ” and “| · |” represent the inner product and the Euclidean
norm on Rd and Sd respectively. Thus,

u · v = uivi, ‖v‖Rd = (v, v)
1
2 for all u = (ui), v = (vi) ∈ Rd,

σ · τ = σijτij , ‖τ‖Sd = (τ, τ)
1
2 for all σ = (σij), τ = (τij) ∈ Sd.

We also use the notation uν and uτ for the normal and tangential displacements,
that is, uν = u · ν and uτ = u− uν · ν. We denote by σν and στ the normal and
tangential stress tensors given by σν = σν · ν, στ = σν − σνν.

We denote by u : Ω×]0, T [→ Rd the displacement field, by σ = (σij) : Ω ×
(0, T ) → Sd, the stress tensor, and by q = (qi) : Ω × (0, T ) → Rd, the heat flux

vector. Also, ε(u) = (εij(u)) =
1

2
(ui·j + uj·i), E = (eijkl), M = (mij), C = (cijkl)

and K = (kij) are respectively the linearized strain tensor, the elastic tensor, the
thermal expansion tensor, the (fourth-order) viscosity tensor and the thermal
conductivity tensor. Here and below “Div” and “div” denote the divergence
operator for tensor and vector valued functions, i.e., Div σ = (σij.j) and div q =
(qi,i).

The classical form of the mechanical fractional contact problem is stated as
follows.

Problem (P): Find a displacement field u : Ω×]0, T [→ Rd and a temperature
field θ : Ω×]0, T [→ R such that

σ(t) = Cε
(
C
0 D

α
t u(t)

)
+ Eε(u(t))− θ(t)M in Ω× (0, T ), (2.1)

q(t) = −K∇θ(t) in Ω× (0, T ), (2.2)

Div σ(t) + f0(t) = 0 in Ω× (0, T ), (2.3)
C
0 D

α
t θ(t) + div q(t) = q0(t) in Ω× (0, T ), (2.4)

u(t) = 0 on ΓD × (0, T ), (2.5)

σ(t)ν = f1(t) on ΓN × (0, T ), (2.6)

θ(t) = 0 on (ΓD ∪ ΓN )× (0, T ), (2.7)

u(0, x) = u0, θ(0, x) = θ0 in Ω, (2.8)

− σν(t)(u(t)− g) = pν(uν(t)− g) on ΓC × (0, T ), (2.9)

‖στ (t)‖ ≤ pτ (uν(t)− g) on ΓC × (0, T ), (2.10)

‖στ (t)‖ < pτ (uν(t)− g)⇒ uτ (t) = 0 on ΓC × (0, T ), (2.11)

‖στ (t)‖ = pτ (uν(t)− g)

⇒ ∃λ 6= 0 στ (t) = −λuτ (t) on ΓC × (0, T ), (2.12)
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∂q(t)

∂ν
= kc(uν(t)− g)φL(θ(t)− θF ) on ΓC × (0, T ). (2.13)

We now describe problem (2.1)–(2.13). First, equations (2.1) and (2.2) are
the time-fractional Kelvin–Voigt thermo-viscoelastic constitutive law of Caputo
type, see [19]. Equations (2.3)–(2.4) represent the equilibrium stress and the
Fourier law of heat conduction with time-fractional. Conditions (2.5)–(2.7) are
the displacement and thermal boundary conditions. The initial conditions are
represented by equation (2.8). Moreover, equation (2.9) represents the normal
compliance contact condition, where pν is a prescribed function. When it is
positive, uν − g represents the penetration of the surface asperities into those of
the foundation. The Coulomb law of friction is considered in (2.10)–(2.12), where
pτ is a prescribed nonnegative function, the so-called friction bound. Finally, the

relation (2.13) represents a regularized thermal contact condition, where
∂q

∂ν
is

the normal derivative of q such that

φL(s) =


−L if s < −L
s if − L ≤ s ≤ L
L if s > L

,

{
kc(r) = 0 if r < 0

kc(r) > 0 if r ≥ 0
,

where L is a large positive constant, see [11].

3. Variational formulation and the main result

To present the variational formulation of Problem (P), we will use the nota-
tions

H =
{
v = (vi) | vi ∈ L2(Ω), i = 1, . . . , d

}
= L2(Ω)d,

H1 =
{
v = (vi) | vi ∈ H1(Ω), i = 1, . . . , d

}
= H1(Ω)d,

H =
{
τ = (τij) | τij = τji ∈ L2(Ω), i, j = 1, . . . , d

}
,

H1 = {σ ∈ H | Div σ ∈ H} .

These are real Hilbert spaces endowed with the inner products

(u, v)H =

∫
Ω
uividx, (u, v)H1 = (u, v)H + (ε(u) + ε(v))H,

(σ, τ)H =

∫
Ω
σijτijdx, (σ, τ)H1 = (σ, τ)H + (Div σ + Div τ)H

with the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H, and ‖ · ‖H1 .
Also, for every real Hilbert space X, we use the classical notations for the

spaces Lp(0, T ;X), C(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ +∞ and k = 1, 2, . . .
Keeping in mind the boundary conditions (2.5) and (2.7), we introduce the

closed subspace of H1 by

V = {v ∈ H1 | v = 0 on ΓD}, Q = {η ∈ H1(Ω) | η = 0 on ΓD ∪ ΓN},
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endowed with the inner product and the norm given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = (v, v)
1
2
V ,

(θ, η)Q = (∇θ,∇η)H , ‖η‖Q = (η, η)
1
2
Q.

Let Vad be the set of admissible displacements defined by

Vad = {v ∈ V | vν − g ≤ 0 on ΓC}.

Since meas(ΓD) > 0, Korn’s inequality

‖ε(v)‖H ≥ cK‖v‖H1 , for all v ∈ V, (3.1)

holds, where cK > 0 is a constant which depends only on Γ and ΓD.
The following Frierichs–Poincaré inequality holds on Q:

‖∇η‖H ≥ cP ‖η‖Q for all η ∈ Q. (3.2)

Moreover, by Sobolev’s trace theorem, there exist constants cd and ct, which
depend only on Ω, ΓD and ΓC , for all v ∈ V and η ∈ Q, such that

‖v‖L2(ΓC)d ≤ cd‖v‖V and ‖η‖L2(ΓC) ≤ ct‖η‖Q. (3.3)

Next, we define the following operators:

a :V × V → R, a(u, v) := (Eε(u), ε(v))H,

c :V × V → R, c(u, v) := (Cε(u), ε(v))H,

d :Q×Q→ R, d(θ, η) := (K∇θ,∇η)H ,

m :Q× V → R, m(θ, v) := (Mθ, ε(v))H.

The mappings j : V × V → R and χ : V ×Q×Q→ R are defined by

j(u(t), v) :=

∫
ΓC

pν(uν(t)− g)vν da+

∫
ΓC

pτ (uτ (t)− g)‖vτ‖ da, (3.4)

χ(u(t), θ(t), η) :=

∫
ΓC

kc(uν(t)− g)φL(θ(t)− θF )η da (3.5)

for all v in V and η in Q.
Now we assume the following assumptions.

1. a) The operators a, c, and d are bilinear and satisfy the usual property of
symmetry

eijkl = ejikl = elkij ∈ L∞(Ω), cijkl = cjikl = clkij ∈ L∞(Ω),

kij = kji ∈ L∞(Ω);

b) the operators c, a and d satisfy the property of ellipticity, i.e., there exist
positive constants mc, ma and md such that

c(v, v) ≥ mc‖v‖2V , a(v, v) ≥ ma‖v‖2V , and d(η, η) ≥ md‖η‖2Q.
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2. The operators a, c, d and m satisfy the usual property of boundedness

|a(u, v)| ≤Ma‖u‖V ‖v‖V , |c(u, v)| ≤Mc‖u‖V ‖v‖V ,
|d(θ, η)| ≤Md‖θ‖Q‖η‖Q, |m(θ, v)| ≤Mm‖θ‖Q‖v‖V ,

where Ma,Mc,Md,Mm > 0.

3. The forces, the traction and the heat flux satisfy

f0 ∈ C
(
0, T ;L2(Ω)

)
, f1 ∈ C

(
0, T ;L2(ΓN )d

)
, and q0 ∈ C

(
0, T ;L2(Ω)

)
.

4. The gap function, the initial conditions and the thermal potential satisfy

g ≥ 0, g ∈ L∞(ΓC), u0 ∈ Vad, θ0 ∈ Q, and θF ∈ L2
(
0, T ;L2(ΓC)

)
.

5. The coefficient of heat exchange kc : ΓC × R→ R+ satisfies the conditions:

a) there exists Mkc > 0 such that |kc(x, u)| < Mkc for all u ∈ R and x ∈ Γ3,
such that x 7→ kc(x, u) is measurable on ΓC for all u ∈ R and vanishes
for all u ≤ 0 and a.a. x ∈ ΓC ;

b) there exists Lkc > 0 such that

|kc(x, u1)− kc(x, u2)| ≤ Lkc |u1 − u2| for all u1, u2 ∈ R.

6. The normal compliance function pν and the friction bound pτ satisfy the
following hypotheses for δ = ν, τ :

a) pδ : ΓC × R→ R+;

b) x→ pδ(x, u) is measurable on ΓC for all u ∈ R;

c) x→ pδ(x, u) = 0 for u ≤ 0 and a.a. x ∈ ΓC ;

d) there exits Lδ > 0 such that

|pδ(·, u)− pδ(·, v)| ≤ Lδ|u− v| for all u, v ∈ R+.

7. The functional j satisfies

‖∂j(u(t), v)‖V ∗ ≤ mj(1+‖u‖V +‖v‖V ) for all u ∈ V, v ∈ V and a.a. t ∈ (0, T )

with mj ≥ 0.

Using Riesz’s representation theorem, we conclude that there exist the ele-
ments f ∈ V and qt ∈ Q given by

(f(t), v)V =

∫
Ω
f0(t) · v dx+

∫
ΓN

f1(t) · v da for all v ∈ V, (3.6)

(qt(t), η)Q =

∫
Ω
q0(t) · η dx for all η ∈ Q. (3.7)

From all these assumptions and notations, we obtain the following variational
formulation of Problem (P).
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Problem (PV): Find a displacement field u : Ω×]0, T [→ Rd and a temper-
ature field θ : Ω×]0, T [→ R such that for a.a. t ∈]0, T [, v ∈ V , η ∈ Q, and α ∈
]0, 1[, we have

c
(
C
0 D

α
t u(t), v − u(t)) + a(u(t), v − u(t)

)
−m(θ(t), v − u(t))

+j(u(t), v)− j(u(t), u(t)) ≥ (f(t), v − u(t)), (3.8)(
C
0 D

α
t θ(t), η)Q + d(θ(t), η

)
+ χ(u(t), θ(t), η) = (qt(t), η), (3.9)

u(0) = u0, θ(0) = θ0. (3.10)

In the following theorem, we state the solvability of Problem (PV).

Theorem 3.1. Let (3.4)–(3.5), Assumptions 1–7 and the conditions

ma > c2
d(Lν + Lτ ) and md > Mkcc

2
t (3.11)

hold. Then Problem (PV) has at least one solution

(u, θ) ∈W 1,2(0, T ;V )×W 1,2(0, T ;Q). (3.12)

4. Existence of the weak solution

The proof of Theorem 3.1 will be carried out in several steps and it is based
on the argument for the monotone operator, the Caputo derivative, the Clarke
subdifferential, the Galerkin method and the Banach fixed point theorem.

First, let β ∈ L2(0, T ;V ) be given by

(β(t), v − uβ(t)) = m (θβ(t), v − uβ(t)) , (4.1)

and we consider the following problem.

Problem (PV1): Find a displacement field uβ : Ω×]0, T [→ Rd such that for
a.a. t ∈]0, T [, v ∈ V , and α ∈]0, 1[, we have

c
(
C
0 D

α
t uβ(t), v − uβ(t)

)
+ a(uβ(t), v − uβ(t))− (β(t), v − uβ(t))

+j(uβ(t), v)− j(uβ(t), uβ(t)) ≥ (f(t), v − uβ(t)), (4.2)

uβ(0) = u0. (4.3)

We have the following result.

Lemma 4.1. For all v ∈ V and a.a. t ∈]0, T [, Problem (PV1) has at least
one solution uβ ∈W 1,2(0, T ;V ).

Proof. Using Riesz’s representation theorem, we define the functional

(fβ(t), v)V = (f(t), v) + (β(t), v) for all v ∈ V. (4.4)

Problem (PV1) can be written as follows:

c
(
C
0 D

α
t uβ(t), v − uβ(t)

)
+ a(uβ(t), v − uβ(t)) + j(uβ(t), v)
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−j(uβ(t), uβ(t)) ≥ (fβ(t), v − uβ(t)), (4.5)

uβ(0) = u0. (4.6)

It is easy to see that under Assumption 1 the operator c is bilinear continuous
and coercive.

By Assumptions 1a) and 2, the operator a is bilinear and continuous.
From Assumption 3, (3.6), (4.4), and the regularity of β, we have that fβ ∈

L2(0, T ;V ).
It is clear from Assumption 6d) that j is a locally Lipschitz function.
We combine these results of the operators c, a, j and the function fβ with

Assumption 7 and using the result provided by Theorem 19 in [21], we find that
Problem (PV1) has at least one solution uβ ∈W 1,2(0, T ;V ).

Here and below c1, c2 and cs denote positive generic constants whose values
may change from line to line.

In the second step, we use the displacement field uβ obtained in Lemma 4.1 to
prove the existence result for the temperature field θβ of the following problem.

Problem (PV2): Find a temperature field θβ : Ω×]0, T [→ R such that for
a.a. t ∈]0, T [, η ∈ Q, and α ∈]0, 1[, we have(

C
0 D

α
t θβ(t), η

)
+ d(θβ(t), η) + χ (uβ(t), θβ(t), η) = (qt(t), η) , (4.7)

θβ(0) = θ0. (4.8)

Lemma 4.2. For all η ∈ Q and a.a. t ∈]0, T [ Problem (PV2) has at least
one solution θβ ∈W 1,2(0, T ;Q).

Proof. We will implement the Galerkin approximation method. For k =
1, 2, . . ., let (wk) be a Kth mode consisting of the eigenfunctions of −∆ such that
(wk)k≥1 forms a Hilbertian basis of H1(Ω).

We are to find a function θβn :]0, T [→ H1(Ω) of the form

θβn(t) :=

n∑
i=1

xin(t)wi. (4.9)

We denote by Fn the vector space generated by w1, w2, . . . , wn.
Whence θβn ∈ Fn and θβn → θβ in Q.
For each integer n ≥ 1, consider the following approximate problem: Find

θβn ∈ L2(0, T ;Fn) such that C
0 D

α
t θβn ∈ L2(0, T ;Fn) and(

C
0 D

α
t θβn(t), wk

)
+ d (θβn(t), wk) + χ (uβ(t), θβn(t), wk) = (qt(t), wk) , (4.10)

θβn(0) = θ0. (4.11)

Using (4.9), we have(
C
0 D

α
t θβn(t), wk

)
Q

= C
0 D

α
t x

i
n(t), (4.12)

d (θβn(t), wk) = Kxin(t), (4.13)
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χ (uβ(t), θβn(t), wk) = χ

(
uβ(t),

n∑
i=1

xin(t)wi, wk

)
, (4.14)

(qt(t), wk) = qkt (t). (4.15)

Then (4.10)–(4.11) can be written as follows:

C
0 D

α
t x

i
n(t) = h

(
t, xin(t)

)
, (4.16)

xin(0) = (θ0, wi) , (4.17)

where

h
(
t, xin(t)

)
= qkt (t)−Kxin(t)− χ

(
uβ(t),

n∑
i=1

xin(t)wi, wk

)
. (4.18)

Due to Assumption 2, we find∣∣Kxin1
(t)−Kxin2

(t)
∣∣ ≤Md

∣∣xin1
(t)− xin2

(t)
∣∣ , (4.19)

and by (3.5), Assumptions 5 and 6, we have that∣∣∣∣∣χ
(
uβ(t),

n∑
i=1

xin1
(t)wi, wk

)
− χ

(
uβ(t),

n∑
i=1

xin2
(t)wi, wk

)∣∣∣∣∣
≤MkcLkc meas(ΓC)

∣∣xin1
(t)− xin2

(t)
∣∣ . (4.20)

Combining this inequality with (4.18)-(4.19), we see that there exists a positive
constant cs such that∣∣h (t, xin1

(t)
)
− h

(
t, xin2

(t)
)∣∣ ≤ cs ∣∣xin1

(t)− xin2
(t)
∣∣ . (4.21)

Then, by a standard method for fractional calculus (see Proposition 4.6
in [12]), there exists a unique absolutely continuous function xn(t) =(
x1
n(t), x2

n(t), . . . , xnn(t)
)

on [0, T∗) that satisfies the system of fractional ordinary
differential equation (4.16)-(4.17).

Estimates: Multiply (4.10) by xin(t), sum for i = 1, . . . , n and the fact that

θβn 7→
1

2
‖θβn‖

2
Q is a convex functional to obtain

C
0 D

α
t

(
1

2
(‖θβn‖

2
Q

)
≤
(
C
0 D

α
t θβn , θβn

)
+ d (θβn , θβn)

+ χ (uβ, θβn , θβn) = (qt, θβn) . (4.22)

After some calculus, for all ε > 0, we have

md ‖θβn(t)‖2Q ≤ |d (θβn , θβn)| , (4.23)

|χ (uβ, θβn , θβn)| ≤
M2
kc
M2
L

2ε
+
εc2
t

2
‖θβn‖

2
Q , (4.24)
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|(qt, θβn)| ≤ 1

2ε
‖qt‖2Q +

ε

2
‖θβn‖

2
Q . (4.25)

So,

C
0 D

α
t

(
1

2
(‖θβn‖

2
Q

)
+ c1 ‖θβn‖

2
Q ≤ c2 ‖qt‖2Q . (4.26)

Applying Proposition 5.3(ii) to inequality (4.26), we obtain

‖θβn‖
2
Q +

2c1

Γ(α)

∫ t

0
(t− s)α−1 ‖θβn(s)‖2Q ds ≤ cs

(
‖qt‖2Q + ‖θ0‖2Q

)
. (4.27)

Consequently, we find that T∗ = +∞.
Let η ∈ Q, with ‖η‖Q ≤ 1, and write η = η1 + η2, where η1 ∈ spam {wk}nk=1

are orthogonal in Q,

‖η1‖Q ≤ ‖η‖Q ≤ 1. (4.28)

Using (4.10), we conclude that(
C
0 D

α
t θβn , η1

)
+ d (θβn , η1) + χ (uβ, θβn , η1) = (qt, η1) . (4.29)

Similarly to (4.23)–(4.25), we have

|d (θβn , η1)| ≤Md ‖θβn(t)‖Q , (4.30)

|χ (uβ, θβn , η1)| ≤MkcMLct, (4.31)

|(qt, η1)| ≤ ‖qt‖Q . (4.32)

Thus, ∥∥C
0 D

α
t θβn

∥∥
Q∗ ≤ c1 + c2 ‖θβn‖Q + ‖qt‖Q . (4.33)

By inequality (4.27), there exists a positive constant cs such that∥∥C
0 D

α
t θβn

∥∥
L2(0,T ;Q∗)

≤ cs. (4.34)

Passage to the limit: Let {τn} be a sequence such that τn → 0, as n→∞.
Using the previous estimates and applying the compactness result (see The-

orem 4.2 in [13]) for the Caputo derivative, there exists a subsequence θβτn and
θβ ∈ L2(0, T ;Q) such that

θβτn → θβ strongly in L2(0, T ;Q), (4.35)

and

C
0 D

α
t θβτn ⇀

C
0 D

α
t θβ weakly in L2(0, T ;Q∗). (4.36)

Then

d
(
θβτn , η

)
→ d (θβ, η) in R, (4.37)
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(
C
0 D

α
t θβτn , η

)
→
(
C
0 D

α
t θβ, η

)
in R. (4.38)

By (3.5) and Assumption 5, we obtain

|χ (uβ, θβn , η)| ≤MkcLkc‖η‖L2(ΓC). (4.39)

Since {χ (uβ, θβn , η)}∞n=1 is bounded in R, we may pass to a subsequence if it is
necessary. For η = θβ − θβτn , by using (3.5), we have∣∣χ (uβ, θβ, θβ − θβτn)− χ (uβ, θβn , θβ − θβτn)∣∣ ≤ c2

tMkcLkc
∥∥θβ − θβτn∥∥2

Q
. (4.40)

By the compactness of trace γ : Q → L2(ΓC), it follows from the weak conver-
gence of θβτn that

θβτn → θβ strongly in L2(0, T ;L2(Ω)). (4.41)

Then

χ
(
uβ, θβτn , η

)
→ χ (uβ, θβ, η) in R. (4.42)

The lemma is proved.

In the last step, for the function β ∈ L2(0, T ;V ) and the function θβ obtained
in Lemma 4.2, we consider the operator Λ : L2(0, T ;V )→ L2(0, T ;V ) defined by

(Λβ(t), v)V := m (θβ(t), v) for all v ∈ V and t ∈]0, T [. (4.43)

We have the following lemma.

Lemma 4.3. For β ∈ L2(0, T ;V ), the function Λβ :]0, T [→ Q is continuous.
Moreover, there exists a unique element β∗ ∈ L2(0, T ;V ) such that Λβ∗ = β∗.

Proof. Let β ∈ L2(0, T ;V ) and t1, t2 ∈]0, T [. Using (4.1) and Assumption 2,
we deduce that

‖Λβ(t1)− Λβ(t2)‖V ≤ cs ‖θβ(t1)− θβ(t2)‖Q . (4.44)

Since θβ ∈ L2(0, T ;Q), we conclude that Λβ ∈ C(0, T ;V ).
Let now β1, β2 ∈ L2(0, T ;V ). Similarly to (4.44), we get

‖Λβ1(t)− Λβ2(t)‖V ≤ cs ‖θβ1(t)− θβ2(t)‖Q . (4.45)

Therefore, from (4.2), we obtain

c
(
C
0 D

α
t uβ1(t)− C

0 D
α
t uβ2(t), uβ1(t)− uβ2(t)

)
+ a (uβ1(t)− uβ2(t), uβ1(t)− uβ2(t))

+ j (uβ1(t), uβ1(t))− j (uβ1(t), uβ2(t))

+ j (uβ2(t), uβ2(t))− j (uβ2(t), uβ1(t)) ≤ 0. (4.46)
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From (3.5) and Assumption 6, we have

|j (uβ1(t), uβ1(t))− j (uβ1(t), uβ2(t)) + j (uβ2(t), uβ2(t))

−j (uβ2(t), uβ1(t))| ≤ c2
d(Lτ + Lν) ‖uβ1(t)− uβ2(t)‖2V . (4.47)

By Definition 5.2, we deduce∥∥C
0 D

α
t uβ1(t)− C

0 D
α
t uβ2(t)

∥∥
V
≤ T 1−α

Γ(α)
‖u̇β1(t)− u̇β2(t)‖V . (4.48)

Combining (4.46)–(4.48), integrating from 0 to t and using the Gronwall inequal-
ity, we conclude that there exists cs > 0 such that

‖uβ1(t)− uβ2(t)‖L2(0,T ;V ) ≤ cs ‖β1(t)− β2(t)‖L2(0,T ;V ) (4.49)

with the condition ma > c2
d(Lν + Lτ ). Using (4.7), we have(

C
0 D

α
t θβ1(t)− C

0 D
α
t θβ2(t), θβ1(t)− θβ2(t)

)
+ d (θβ1(t)− θβ2(t), θβ1(t)− θβ2(t))

χ (uβ1(t), θβ1(t), θβ1(t)− θβ2(t))− χ (uβ2(t), θβ2(t), θβ1(t)− θβ2(t)) = 0. (4.50)

By (3.5) and Assumption 5, we conclude

|χ(uβ1(t), θβ1(t),θβ1(t)− θβ2(t))− χ (uβ2(t), θβ2(t), θβ1(t)− θβ2(t)) |
≤Mkcc

2
t ‖θβ1(t)− θβ2(t)‖2Q

+ LkcLctcd ‖θβ1(t)− θβ2(t)‖Q ‖uβ1(t)− uβ2(t)‖V . (4.51)

In the same way as above, after some calculations we get that there exists cs >
0 such that

‖θβ1(t)− θβ2(t)‖L2(0,T ;Q) ≤ cs ‖uβ1(t)− uβ2(t)‖L2(0,T ;V ) (4.52)

with the condition md > Mkcc
2
t .

Combining (4.45), (4.49) and (4.52), we obtain

‖Λβ1(t)− Λβ2(t)‖L2(0,T ;V ) ≤ cs ‖β1(t)− β2(t)‖L2(0,T ;Q) . (4.53)

Reiterating this inequality n times leads to

‖Λnβ1(t)− Λnβ2(t)‖L2(0,T ;V ) ≤
(cs)

n

n!
‖β1(t)− β2(t)‖L2(0,T ;V ) , (4.54)

which implies that for n sufficiently large the power Λn of Λ is a contraction in
L2(0, T ;V ). Therefore, there exists a unique element β∗ ∈ L2(0, T ;V ) such that
Λβ∗ = β∗.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let β∗ ∈ L2(0, T ;V ) be a fixed point of the operator Λ.
Denote by uβ∗ a solution of Problem (PV1) and let θβ∗ be a solution of Problem
(PV2) for β = β∗. Using the definition of Λ, (4.1)–(4.3) and (4.7)–(4.8), we find
that (uβ∗ , θβ∗) is a solution of Problem (PV).
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5. Appendix

In this section, we recall some known definitions and properties on nonlinear
analysis and fractional calculus, which can be found in [4, 10,14,15].

Definition 5.1 (The Riemann–Liouville fractional integral). Let X be a Ba-
nach space and (0, T ) be a finite time interval. The Riemann-Liouville fractional
integral of order α > 0 for a given function f ∈ L1(0, T ;X) is defined by

0I
α
t f(t) =

1

Γ(α)

∫ t

0
(t− s)α−1f(s) ds for all t ∈ (0, T ),

where Γ(·) stands for the Gamma function defined by Γ(α) =
∫∞

0 tα−1e−t dt.

To complement the definition, we set 0I
0
t = I, where I is the identity operator,

which means that 0I
0
t f(t) = f(t) for a.a. t ∈ (0, T ).

Definition 5.2 (The Caputo derivative of order, 0 < α ≤ 1). Let X be a
Banach space, 0 < α ≤ 1 and (0, T ) be a finite time interval. For a given function
f ∈ AC(0, T ;W ), the Caputo fractional derivative of f is defined by

C
0 D

α
t f(t) = 0I

1−α
t f ′(t) =

1

Γ(1− α)

∫ t

0
(t− s)−αf ′(s) ds for all t ∈ (0, T ).

The notation AC(0, T ;X) refers to the space of all absolutely continuous func-
tions from (0, T ) into X.

It is obvious that if α = 1, then the Caputo derivative reduces to the classical
first-order derivative, that is, we have

C
0 D

1
t f(t) = If ′(t) = f ′(t) for a.a. t ∈ (0, T ).

Proposition 5.3. Let X be a Banach space and α, β > 0. Then the following
statements hold:

(i) for y ∈ L1(0, T ;X), we have

0I
α
t 0I

β
t y(t) = 0I

α+β
t y(t) for a.a. t ∈ (0, T );

(ii) for y ∈ AC(0, T ;X) and α ∈ (0, α], we have

0I
α
t
C
0 D

α
t y(t) = y(t)− y(0) for a.a. t ∈ (0, T );

(iii) for y ∈ L1(0, T ;X), we have

C
0 D

α
t 0I

α
t y(t) = y(t) for a.a. t ∈ (0, T ).

Definition 5.4 (The Clarke generalized directional derivative and the gen-
eralized gradient). Let J : X → R be a locally Lipschitz function. We denote by
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J0(u, v) the Clarke generalized directional derivative of J at the point x ∈ X in
the direction y ∈ X defined by

J0(x, y) = lim sup
λ→0+
z→x

J(z + λy)− J(z)

λ
.

The generalized gradient of J : X → R at x ∈ X is defined by

∂J(x) =
{
ξ ∈ X∗ | ∀y ∈ X J0(x, y) ≥ 〈ξ, y〉X∗,X

}
.
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Задача термов’язкопружного контакту з тертям iз
нормальним та кулонiвським тертям

Mustapha Bouallala and EL-Hassan Essoufi

Дослiдження стосується аналiзу задачi квазiстатичного контакту з
тертям мiж термов’язкопружним тiлом i термопровiдною основою. Рiв-
няння стану побудоване з використанням моделi Кельвiна–Фойгта з дро-
бовою похiдною. Теплопровiднiсть моделюється дробовою похiдною вiд-
носно часу температурного параметру θ. Контакт описується за при-
пущеннями нормальної пiддатливостi та кулонiвського тертя. Ми отри-
муємо варiацiйне формулювання задачi i доводимо iснування слабкого
розв’язку для моделi, використовуючи теорiю монотонного оператора,
похiдну Капуто, субдиференцiал Кларка, метод Гальоркiна та теорему
Банаха про нерухому точку.

Ключовi слова: термов’язкопружний контакт, нормальна пiддатли-
вiсть, кулонiвське тертя, похiдна Капуто, слабкий розв’язок, метод Га-
льоркiна, теорема Банаха про нерухому точку

mailto:bouallalamustaphaan@gmail.com
mailto:e.h.essoufi@gmail.com

	Introduction
	Time-fractional contact problem
	Variational formulation and the main result
	Existence of the weak solution
	Appendix

