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A Note on a Damped Focusing
Inhomogeneous Choquard Equation

Lassaad Chergui

This paper is devoted to the focusing inhomogeneous Choquard equation
with linear damping:

it + Au+dau = —|z| 77 (I * [ulP)|uP "2y on RY,

where @ > 0 and 0 < v < inf(V,2 4+ «). Global existence and scattering
are proved for sufficiently large damping. For arbitrary damping, global
existence of solutions is obtained if the initial data belong to some invariant
sets.
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1. Introduction

This manuscript is concerned with the following damped focusing nonlinear
Schrédinger problem of Choquard type with inhomogeneous nonlinear term:

{iu—l-Au—l—iau: — || (I * [ufP) [ufP~ 2, (1.1)

U(O, ) =1,

where u: Rx RN — Cforsome N >3, a>0,0<a<N,p>land0<~vy<
inf(N,2 + ). The Riesz potential is defined on RY by

N—«
1, = F](V z) = l]i_a'
r(§)mz20| |Ne ||

The free operator associated to the damped Schrédinger equation stands for
Ualtyp = e “F (e )y, o e B'RY).

When a = 0, equation (1.1) has several origins such as quantum mechan-
ics [13], the Hartree-Fock theory to describe an electron trapped in its own
hole [15] and non-relativistic quantum theory [12]. In [20], equation (1.1) is used
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to describe self-gravitating matter in a programme in which quantum state reduc-
tion is understood as a gravitational phenomenon. Recently, problem (1.1)(a =
0and 2 < p < %) has been widely studied. Indeed, in [5, 8, 10, 21, 22],
the authors discussed local and global well-posedness, existence of blow-up solu-
tions, scattering and strong instability of standing waves for some Schrodinger—
Choquard equation.

Before we proceed to the discussion, it is useful to look at the most vital
symmetry which is scaling symmetry. Indeed, the first equation in (1.1) enjoys
the following scaling invariance:

at+2—y 2
ux(t) = A2e-Du(A*t, A), A >0.
For a real number u, we have
_N_ at2-
lur ()l g = X7 2 75070 [[u(A2, A | -

So, the critical exponent is

N a+2-v
TR T e

for which the H* norm is unaffected by scaling. The case s, = 0 corresponds
to the mass critical exponent p, = 1+ %277 The energy critical case s, =
1 corresponds to p* = 1+ O‘;\F,Q:QV. For smaller p, that is, p €]1,p*[, which is
called the energy subcritical exponent, contracting time reduces the size of the
H' norm. This is the effect that will be exploited to build up solutions. For any

solutions to (1.1), let us define the following quantities called mass and energy:

The standard damped Schrédinger equation
i+ Au+ iau = —|u2P~ Dy (1.2)

arises in various areas of nonlinear optics, plasma physics and fluid mechanics,
see [1,2,9,11,26,27]. In [18], M. Ohta and G. Todorova established that the
Cauchy problem associated to (1.2) is well posed in the energy space and the
solution is global for large damping. For other modifications of the classical
equation (1.2), see also [6,7,24,25]. It is thus quite natural to complete the
nonlinear Choquard equation by a linear dissipative term to take into account
some dissipation phenomena. This paper seems to be the first to treat the well-
posedness issues for the damped inhomogeneous Schréodinger—Choquard problem

(1.1).
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The aim of this note is to prove that large damping prevents finite-time blow-
up of solutions. Indeed, global existence and scattering are proved if the dissi-
pation coefficient is sufficiently large. For arbitrary damping, global existence of
solutions is obtained when the initial data belong to some invariant sets.

This paper is organized as follows: Section two summarizes the main results
and gives some technical tools needed in the sequel. In Section three, we prove
some inhomogeneous Gagliardo—Nirenberg inequality adapted to the above prob-
lem. Section four is devoted to establishing the existence of ground state for
the standard stationary problem related to (1.1). In Section five, we prove that
(1.1) is locally well-posed. In Section six, global existence for large damping is
shown. Scattering of such global solutions is obtained in Section seven. In the
last Section, without any assumption on the size of damping, we obtain global
existence via some stable sets.

We close this section with some notations. We consider the Lebesgue spaces
L™ := L"(RY) equipped with the norms || f||, := || f||r = (fp~ \f(x)]’"dx)% if r <
00, else ||flloo := || fllLee = supess,ern |f(2)]. For the vector valued functions
[(fi)llr == sup; [|fjll-- When r = 2, let ||f|| := [|f[]2. The usual inhomogeneous
Sobolev space is denoted by Wb := W17 (RY) and endowed with the complete
norm || f|ly.- = (IfII" + \|Vf||”)% In the case 7 = 2, we denote H' := Wh?
which is equipped with || f||g = (||f]I* + HVfHZ)% If X is an abstract space,
the set of continuous functions defined on [0, 7] and valued in X is denoted by
Cr(X) :=C([0,T), X), if necessary the interval of time may be closed. Also, we
denote LY(X) := L9(I, X) where I is an interval of R. The set X, 4 stands for the
set of radial elements in X. Constants will be denoted by C' which may vary from
line to line. For simplicity, let [ f(z)dz = [pn f(2)dx and [ f(z,y)drdy =
[ [ f(z,y) dxdy. Finally, if A and B are non-negative quantities, we write A <
B to denote A < CB, if A < eB, we write A = o(B) and A~ Bif A= B+
o(B).

2. Main results and background

Let us introduce at first some relevant quantities. For w > 0 and v € H', one
denotes

1 _
Su(v) : = wlol + Vol = / 2]~ (Lo % o) ol? de,

Ky (v) = wlv]]? + [ Vo] - / 2|77 (Lo * [v]?) |v]? de,
and then defines
Hy,(v) := (Sy — Ky)(v).
Also, let B:= Np— N —a+ v and A :=2p — B, then denote
RS | L1
- Sl U v vl da

Next, we define the so-called energy subcritical ground state solution of problem

(1.1).

ve H —{0}.
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Definition 2.1. Any solution ¢ € H* — {0} of
Ap—we+ |27 (Lo * [¢) o 26 = 0, (2.1)
which minimizes the problem

wi= inf {Su(v) s.t Ku(v) =0}, 2.2
moi= il (Su(v) st Ku(v) = 0) 22)

is called the ground state of problem (1.1).
Also, we give the definition of admissible pairs.

Definition 2.2. A pair of real numbers (g, ), which satisfies

1 1 2
2<q,r<oo, (q,7)# (2,00) and N(Q—):,
r

is said to be admissible and is denoted by (¢,r) € T
To close this introduction, we consider
Q(X):=2(N-2)X>~(3(N-2)+2(a—y+1)X + (N -2)+a—1.

Elementary computations prove that Q(p*) > 0 and Q(1 + %) < 0. Then Q
admits two distinguished real roots p__ TN < p2_7 N such that

_ a—7
pO(—’Y,N < 1 + T <p;)t—’7,N <p*

2.1. Main results. First, the existence of ground states to (1.1) is obtained,
the question of uniqueness is not treated.

Proposition 2.3. Let N > 3 and 1 + a—;ﬂ < p < p*. Then there exists a
ground state solution to (2.1) and (2.2).

Second, the best constant of inhomogeneous Gagliardo—Nirenerg inequality
related to problem (1.1) is investigated.

Proposition 2.4. Let N > 3 and 1+ “5% < p < p*. Then
o there exists C(N,p,a,7y) > 0 such that

Vo e HY, / ] 77 (Lo * [oP) [Pz < C(N, p, a, y) [[o]| 4[|Vl %; (2.3)

e the minimization problem

1
——— = inf J
C(N7p)a7f}/) veé{lf{o} (v)

is attained in some Q € H' satisfying C(N,p,a,7) = [ |z|77 (1o * |QP)|Q|Pdx
and

2p _ 24 _
*BAQ+AQ*W|$’ (1o *|QP)|QIP7Q = 0; (2.4)
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e moreover, there is ¢, a ground state solution to (2.1), such that

2p A B oy
C(vaa CK,")/) = Z(E) 2 H(bH 20p 1)' (25)

Let us state our third result, the Cauchy problem (1.1) is locally well-posed
in the mass and energy spaces.

Theorem 2.5 (L2-theory). Suppose N >3, a, v satisfy
0<y<inf(N,2+a), N-2<a-7,

and 2 < p < ps. Then, for any ¢ € L?, there exist T* := T;w > 0 and a unique
mazximal solution to problem (1.1) such that

u € Cpx (Lz) N LY

loc

([0,77),L")  for any (¢,7) € T.
Theorem 2.6 (H'-theory). Suppose N >3, a, v satisfy
0<vy<inf(N,24+«a), max(vy+1,2—a+v9)<N<4d+a-—7v

and 2 < p < p*. Then, for any 1 € H', there exist T* := T, >0 and a unique
maximal solution u € Cps(H') to problem (1.1). In addition, we have:

o uc Ll ([0,7%), WL for any (q,7) € T;

loc
o M(u(t)) = e 2 M(v)) and %Sw(u(t)) = —2aK,(u(t)) on [0,T%).

Remark 2.7.

1. The assumption p > 2 is due to the contraction arguments used in the proof.
This condition forces us to assume p* > 2 which gives the condition N — 4 <
«a—~. This restriction seems to be technical because the energy is well-defined
for 14+ =+ < p < p*.

2. Non-existence of standing waves is a direct consequence of the mass decay.
Next, we show that global well-posedness of (1.1) holds for large damping.

Theorem 2.8. Suppose N > 3, «, v satisfy
0<vy<inf(N,2+«), max(y+1,2—a+~v) <N <4d+a-—7,

and pl’_%N <p<p*. Assume u € Cp«(H") to be the mazimal solutions to (1.1)

with the initial data ¢ € H. Then there exists a positive real number a* =
a*(||¢]lg1) such that T*d) = o0 for all a > a*.

a

Now we establish a scattering result about the global solutions given by The-
orem 2.8.
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Theorem 2.9. Suppose a > a* and the assumptions of Theorem 2.8 hold.
Assume u € C(Ry, HY) to be the global solutions to (1.1) with the initial data
W € H'. Then there exists u,. € H' such that

lim [Ju(t) — Ua(t)uy || g = 0. (2.6)

t——+o0

In addition, the scattering mapping S : H* — H',4 — uy is continuous and
one-to-one.

Following Ohta and Todorova [18], whatever the size of the damping is, we
prove the existence of a global solution to (1.1) via some stable sets

Ay = {v e H' st Sy(v) < my and Ky (v) > 0}.

Theorem 2.10. Let N > 3, «, v such that 0 < v < inf(N,2 4+ «) and 1 +
S < p < p*. Then the family Uy>oAy is invariant under the flow of (1.1),
and if ¢ belongs to this family, then the solution emanating from 1 is global.

2.2. Tools We start first by using some classical Sobolev injections [16]
which give a meaning to the energy. Also, various computations are done in this
note.

Lemma 2.11. Let N > 3. Then
1. H'— L9 for any q € [2, %},

2. the injection Hﬁd — L1 is compact for any q € (2, ]\2,—]_\72),

3. foranyre (1,N) and q € (r, A],Vfr], we have Wh" «— L4;

4. for any q € [2, %], let 0 := N(% — %), and we have

—0 0
lullg < lull* = V7ull®.

Recall the Hardy-Littlewood—Sobolev inequality [14].

Lemma 2.12. Let N >3, 0< A< N,1<r,s<ocoand feL", ge L*. If
% + % + % = 2, then there exists Cn s ) > 0 such that

T
m dxdy < Cnsallfllrllglls-

Corollary 2.13. Let N >3, 0 < a< N,1<qnr,s<ooand f € L", g €
L?®. Then there exists Cn s > 0 such that

1. if%+%:1+%, then

/ (Lo # ) (@)g(y) dz dy < Crvsallfllllglls
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2. if LAt Li=14%, then

[(Za * F)glly < CN.s0

[ Fll-llglls-

The second result obtained above is known as the Hardy-Littlwood—Paley
inequality. The following result summarises some classical properties of the free
damped Schrodinger kernel U, (t) [18].

Proposition 2.14. We have:
1. Ua(t)v is the solution to the linear problem associated to (1.1);

2. Ua(t)+i [3 Ualt — ) (Lo * | - [Plul?)|z|?|ulP~2uds is the solution to (1.1);
3. Uo(t) is an isometry of L*.

4 U@ fllr S ENED fll,2 <7 < 00

5. Ua(t) = e ®Uy(t);

6. Uy(t+s) = Us(t)Ua(s);

7. Ul(t)* = U_o(—t).

The Strichartz estimate from [4] is a standard tool to control the solutions of
a Schrodinger equation in Lebesgue spaces.

Proposition 2.15. Let N >3, T > 0 and 1) € L?>. Then there exists C >
0 such that

sup |lull gy < Cn <H¢H + (q,i%fg léa + Au”L?(L”’)) : (2.7)

(g,r)er

Remark 2.16. The Strichartz inequality is compatible with truncations [21].
Indeed, if we have it + Au = h and (q,7),(G,7),(G1,71) € T', then there exists
CnN,q,g > 0 such that

lullzzzry < Oniag (914 1ol gy + 1802 )

Using Proposition 2.14 and the one-dimensional Riesz potential inequality, we
give some modified Strichartz estimates which will be proved in Appendix.

Proposition 2.17. Let T > 0, N > 3 and 2 < r < 2. Take 0,1 €
(1,+00) such that

Then there exists Cn 9 > 0 such that

/ Ua(t —s)f(s)ds
0

. < CN,T,&”,]CHL%/(LT/)- (2.8)
T
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Remark 2.18. The previous inequality is also valid without any restrictions
of f(s). In particular, one has

Similarly, for the integrals on the set |z| > 1. Moreover, taking 0 = yu = ¢, we
obtain

Corollary 2.19. Let T >0, N >3, € L? and (q,7),(§,7) € . Then there
exists Cn g5 > 0 such that

/ Ua(t —s)f(s)ds
0

S Cnpoll Il .
LO(L7(Jx]<1)) Lt (L7 (|2]<1))

/t Ua(t —s)f(s)ds
0

< .
L) Onallfll g

lullgory < O (1911 + i+ St g o) (29)
We end this section by showing the following absorption lemma [23].
Lemma 2.20. Let T'> 0 and X € Cr(R4) such that X(0) =0 and
X(t) <b4+eX(t)? onl0,T],

where 1 < 0,0 <cand 0 <b< (1— %)(b@)fé. Then

0
X(t) < —— T).

3. The stationary problem

In this section, we are going to prove Proposition 2.3. For this purpose, we
are to establish first some auxiliary results.

3.1. Preliminary results.

Lemma 3.1. For any v € H', the function X — H,(\v) is increasing on
R,.

Proof. The result is trivial since p > 1 and
opP — 1 _
Hy(M) = AP—— / || (1o * |v|P)|v|P d. O
p

Lemma 3.2. If v, € H' — {0} such that lim,, ||v,|| 1 = 0, then there exists
ng € N such that Ky,(v,) > 0 for all n > nyg.

Proof. Thanks to the interpolation inequality (2.3), one has

_ 2 2(p—1
/!w\ (I # [onlP)oal” dz S oa A 1V0all® S llonlF, = ol 57 loal,-
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Then
/Wﬂ(fa # [ [P) o P dz = o(wlva||* + | Vval?).

It follows that
K _ 2 2 2 2 2 2
w(vn) = wllon|” 4+ [[Vou|” + o(wllon||” + [[Von %) ~ wllval|” + [|Von]|” > 0.
This finishes the proof. O

Lemma 3.3. We have

inf  {H,(v) | Ky(v) <0}.

My
veH1-{0}

Proof. Denote

M = inf {Hy,(v) | Ky(v) <0}
m veé?_{c)}{ (v) [ Ku(v) <0}

Obviously, one has 7, < m,,. Conversely, take v € H' — {0} such that K, (v) <
0. Since limy_,o+ [|[\v||z1 = 0, then, by the previous lemma, there exists Ao €
(0,1) such that K, (Av) > 0. Thus, by a continuity argument, there exists A\; €
(Mo, 1) such that K, (Ajv) = 0. Knowing that A — H(\v) is increasing on the
interval [0, 1], we have

My < Sw(Av) = Hy(Av) < Hy(v).

Therefore my, < M. O
3.2. Proof of Theorem 2.3. For € small enough, denote

@)_:::f(l_lie)’ <§>+::Jj<1+1ie>

and
_ 2N T 2N

ro= , r= .
NA+oa—v—e¢y N4 a—vy+ey

Taking (¢,,) as a minimizing sequence which is supposed to be radial decreasing
according to some rearrangement argument. Namely,

bn € HYy — {0}, Ky(¢n) =0 and  lim Hy(¢n) = lim Sy(dp) = my.  (3.1)
Then
wl|én* + |én]* = / |z| 77 (Lo * [0]P) [0]? dav.
So,
p—1 _
p/m L+ o) 0l? dz = Su(dn) — 1100,
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Thus (¢,) is bounded in Hﬁd and by a compact Sobolev embedding, we can
assume

2N

¢n — ¢ in HY; and ¢, — ¢ in L? for any ¢ € (2N2>

Assume ¢ = 0. Since

142 L 2 148 L 2

_ = — a = —

N (ﬁ)* — N (ﬂ)+ o
ol 2l

then, by the Hardy—Littlewood—Sobolev inequality, one has

/ 2] (L * |0 ]?)|Gul? da := / (Lo % | [P 2] 7|60 P dz

lz|<1
T / (Lo * [ul?)]c| | u P d
|z|>1

— 2 — 2
S Wl 2ty oy Ml 12 + Ml 71 a1y NP2
S MonlPI7- + llgnl?l-

2 2
= H¢anff + ”¢an€+-

Because 1+ 252 < p < p*, then 2 < pr=, pr™ < 225 for some ¢ small enough.
Taking into account a compact Sobolev embedding, we get

/ |x| 7" (1o * |@n|P)|Pn|P dx — 0 as n — 4o0.

Since Ky (¢n) = 0, then lim,, (w|¢n||? + [|[Vén|*) = 0. Thanks to Lemma 3.2, we
get Ky(¢n) > 0 for a large value of n. Then ¢ # 0 by contradiction. Next, we
have to prove that m,, > 0. With the lower semi-continuity of the H' norm, we
have

0 = liminf K (¢,) > wliminf ||¢, || 4 lim inf ||V, |2
n n n

- / 2] (Lo % |BP) 6P dz > Koulg).

In a similar way, we obtain H,,(¢) < m,,. Furthermore, if K,,(¢) < 0, then there
exists A; € (0,1) such that K(\1¢) = 0. Therefore,

My < Sw()\1¢) = Hw(>\1¢) < Hw((p) < My.

Then
My = Sw()\lgb) = Hw()\1¢) > 0.

Let ¢ := A1¢. Then ¢ is a minimizer for (2.2) which satisfies (3.1). Finally, we
are going to prove that ¢ satisfies (2.1). There exists a Lagrange multiplier p €
R such that S}, (¢) = uK.,(¢). Hence,

1
— 06+ wh— 3ol 7 L+ IO = pu(— Db+ wh— Lol (T < o) ol 20).
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After multiplying the previous equation with ¢ and then integrating, knowing
that K, (¢) =0, it follows that

1—-p _
pi 2 [l ool do =0
Consequently, ¢ = 0 and then S’'(¢) = 0. Thus ¢ is a ground state to (1.1).

4. Inhomogeneous Gagliardo—Nirenberg inequality
Next we will prove Proposition 2.4.

4.1. Interpolation inequality. Using the Hardy-Littlewood—Sobolev in-
equality yields

V(I 0| ulP da < = P|2_ 4 = p
1l o x o) op de < i ) e I 10y P

2
S ol + ol

Since 1 + 22 < p < p*, then 2 < pr—, pr* < 22, By Lemma 2.11, we obtain

- —0- _ 1 1
lo22_ < (|IVo)l? ||v]*=97)%, 6 ::N<_>

pro

and

2 + _p+ 1 1
lolZ. < (vl o] ="y, 6 ;:N<_>‘

pr+ ~

Making € small enough, we obtain

/le_”(fa « o) ol da < ([ Vol Z o) 2.

4.2. The best constant of the Gagliardo—Nirenberg inequality. First,

let )
=————= inf J(v).
5 C(Napa «, 7) ”61}111*{0} (v)

Let (vy,) be a minimizing sequence with a rearrangement argument and let (vy,)
be radial decreasing. Denoting vM* := \v(u-), we have

Vo2 = A2 =N [ Vl?, o = X2l

/|$|_”(Ia [P oM P da = AP o / |27 (Lo * [0]P) [0l dz

Hence, J(v™M*) = J(v) via some elementary computations. Now, let us define

N
oz = [[vnll
_ = .
V|| 2 [V on]|
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So, Y, = vﬁ"’“n satisfies
[thall = [Vl =1 and € = lim J (a5,

Then, for a subsequence also denoted by (v,,), there exist 1 € H!, such that
Y, — Y. Now we are going to prove that

/ (2] (Lo # [P ul? iz — / 2] (o % [P e

For that, let

3

L= / 2]~ (Lo * [P [ ]? de — / 2| (L * [IP) [P da
(|lz|<1) (|z|<1)

and
Bim [l U il de = [l 0P 0l do
(|lz[>1) (|z[>1)
We have

B= [l e s (P = W)l do
(Jz|<1)
[l U PP 10F7) da
(lz|<1)
Using the Hardy-Littlewood—Sobolev inequality, one gets
Mnl” = 10l llln -
+ H!%\_”H<ﬁ

3 P\l ebnl? = |07 -
S (S e

< PPl + 9Pl Nlnl? = 19, -
S (Il + 118, ) Heeal” = 17—

1 _
B My
;

Together, the Holder inequality, the Mean Value Theorem and the fact that the
function z — 2" is convex, give us

1l = [Pl S I35l + [~ Habn = -
S Il @07 4 D Y — 9
S (a0 + 11 Z7 ) o = ol

It is well known that (a + b)? < 2(a” 4 b°) for a,b non-negative and 0 < p < 2.
Then
-1 -1
gl = 1602l S (lall? + 112 ) Wb = @l
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Thus,
—1 —1
15 S (Il + 1012, ) (nliZ + 16122 ) b = @l
In a similar way, one obtains

-1 -1
12 5 (Il s+ 1012, ) (Ibnlrt + 1612 ) o = 6l

Since 2 < pr—, 2prt < 255

lim, I! = 0 and lim I? = 0. Hence lim,, I,, = 0 and when n goes to 4+00, we get
n n

then, by compact Sobolev injections, we have

1 1
T TR ek [0al)[nl dz [ T2l (T * [0 [0 d

Thanks to the lower semi-continuity of the H' norm, we get ||| < 1 and ||[Vy| <
L. If [|4]| < 1 or [|[Vy| < 1, then [|4||4]|V||B < 1 which implies J(¢) < £&. This
contradicts the definition of £, and then ||| = ||V#¢|| = 1. Consequently, ¢, —
1 in Hﬁd and

J(¢n)

C(N,p,a,7) = 2 — J(lw - / 27 (L * [P [P d.

The minimizer 1 satisfies the Euler equation
Oy J (¥ +1h)|y—0 =0 forall h € C5° N H.

Then 1 satisfies the desired equation (2.4). It remains now to prove (2.5). For
M\ i€ R, let ¢ = oM := A\gp(u-). In equation (2.4), replacing 1 by ¢™M* yields

pEAG+ ¢ — 2%m2”’2u*°‘”|x!’”(fa x |[pP)|o[P2p = 0.

A% 4 A%Aﬁ
v=(5)" m = ((5) "5

—Dd— ¢+ ||V (Lo * 9] 6P ¢ = 0.
Since 1= [[i)]| = A~ = [|¢]|, then
A
Mol = ()

A
2(p-1) | 4)12(p—1) — [ 2=
oo - (2) 7

a—y N(p—1)

AN T A o)
(B) ol —(

B
A
Taking

we get

Sl IsS
~
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We can deduce the following:

ol N(p—1)

_A (AT (AT e
=2 (3) (3) 7 tere

_Np-1)—a+ty _B
—2(%) T eren=2(2) e
2p \ B 2p \ B

In conclusion,

_1_2p(A —2(p—1)

5. Local well-posedness

5.1. L?>-theory. Our aim in this sub-section is to prove Theorem 2.5, namely
the existence of a local solution to (1.1) in L2. For ¢ € L? and T > 0, which will
be fixed later, let R := 2sup, er HUO(-)wHL%(LT) and define

Br(R):=1uc€ ﬂ LI(L") | sup Hu||LqT(LT)SR

(¢,r)eT (g,r)el’

The closed ball Br(R) is equipped with the complete distance

d(u,v) := sup HuHLq (L)
(g,r)erl

Define the function
d(u)(t) == Up(t)y + i/o Uo(t — s) {iau+ (L * [u(s)[P)|u(s)[P"*u(s)} ds.

For some ¢ small enough, let

Ty vt+e) Ty v—¢)’
2Np ~ 2Np
r=---——— re=---————
N+a—-vy—¢’ N+a—-vy+¢’
4p ~ 4p
q:= q:=

Np—N-—-a+~vy+¢e’  Np—N-—-a+vy—¢

Taking u,v € Br(R), using the Strichartz estimate (2.7) and Remark 2.16, one
gets

A(9(u), 6(0)) S llia(u — v) + (T * [ul?)lal " ul?2u
= (T Pl ol 20y o1

+ (Lo [ulP) |2 ™ ulP "0 = (Lo * [0f?) 2] 7 0P ~20]

+ |lia(u — v)

Lq (L7 (|z]>1))

S allu — ’UHLq (L™ (|z]<1)) +a\|u UHL‘Z (L7 (|z|>1))
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o [l? = PPl 2l g 1,

(
P ¥ p—2, Y p—2 /
+ || (Lo * [oP)[|z| " uP™%u — |z v ]||LqT(Lr’(|x\<1))
(
(

1T ual? = [o Dl [l 2ull g o

+ 11T Jo ) [l k™0 = [ o720l g gy

S allu = vl oy + alle = vl oy + (A)+ (B) + (C) + (D),

LI (L)

We have r > 2 then 2 > 1, with a convexity argument, one has ||u — qu < lu—
v||9". Thus,

T p a 1 1
allu =l ) <a (/0 lJu — v]|? dt) < Tl u— vl g (r2y < T d(u,v).

1
Similarly, we obtain afu—vl| & < aT7 d(u,v). By the Mean Value Theorem,
T

(L™

we have

(B) S 1o [o) 27 ([ul? ™ + o2 = 0l g (10t gy

The Hardy—Littlwood—Paley inequality via

« 1 1 2p-—-1
1 _— = = —
+N T+<77+ ; )

gives
(B) S olZ Ml ™ aqay<ny (el 272 + loll2=2) lu — vlirll g
2(p— 2(p—
SHWulF®=D + o2~ = ol o
T

Since p < ps, then there is ¢ small enough such that p + & < p«, which implies
Np (5 — %) < 1. So %p < 1 and then (2p — 1)¢’ < q. Hence, there exists p > 0
such that % = % + %. Using the Holder inequality, we get

l 1

(B) S T (Il + 10129 = vll ey S T B2 Vd(u,v).

Similarly,

< p—1 p—1 _ 1, |p—2 ,
(A) S 1o * [[ulP™ + [v[P]|u = v]) |z ul uIILqT(LH(Wl))

1oo(n—
S ulPP + [lof2PD) flu — UlerLqT' S T R*PVd(u,v).

Now, in order to estimate the integrals on |z| > 1, we make use of 7,7 and ¢ with
€ small enough. Then

(C) = lI(Ta * [[ul? — [0 ]| ulP~ul < T R0 Dd(u,v),

Lq (L7 (|z]|>1)) ~
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(D) = (T * o) llal ™l = 2l o2l oy

< T3 REP-D(u, ).
In summary,
7 7 4T R20-1) 3 R20-1)
d(®(w), B(v)) < (aTq' +aT7 + TrRXP=D {75 R )d(u, V).
Taking v = 0, we get

sup [ @(w)pz(ry < sup [Uo()dll e r
(g,r)er (g,r)er
1 1 1 2 1 1 2 1
+c(aTq'R+aTa’R+TpR p=1 LT3R P‘)
R

SS5+C (aﬁ +aT7 + TP RV 4 Ti R R,

Therefore, ¢ is a contraction of By (R) for some T' > 0 small enough. Its fixed
point is a solution to (1.1). The rest of this sub-section is devoted to establishing
the uniqueness of solutions to (1.1). Let 7" > 0 and u,v € [\ ;)er L1(L") be two
solutions of (1.1). So, w := u — v is a solution to the followmg Cauchy problem:

i + Aw + iyw = | 77 (Lo * [oP) 0P~ = [ 7 (Lo * ul?)[ulP~?u,
w(0,-) = 0.

Taking 7 € (0,7"), with a continuity argument we can suppose 7 to be small
enough such that

max ([l s gy Il oz gy, 100 s grys ol oo oy ) < 1.
Arguing as previously with the Strichartz estimate (2.7), one gets

sup [[w]|pg ) S allw]] + affw]]

P L3 (17 (jal>1))

LY (L7 (jz[<1))
p —Y|p|P—2,, _ p =Y |4, |P—2
o * o)™ o™ = (Lo a2l ull L 1y

[ fo ) 0P~ = (Lo Jul?) el Pl g g

1 1 ~
Sa (77 +77) |wllpge sz + (77 + )
2 1
< (Il + B9 + ol + 11?970 )

x (ol oy + ol g0

1 1 p
< (or? +ar? 477 477) sup g,
(gr)eT

Thus, the uniqueness follows for small time 7 and then on [0,7") with a standard
translation argument.
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5.2. H'-theory. In this subsection we have to establish that the Cauchy
problem (1.1) is locally well-posed in H!. Precisely, we are going to prove The-
orem 2.6. For T > 0 and ¢ € H', let R := 2sup( e 106(-)¥ | L2, w1y and
define

Br(R):=que [\ LEW")| sup |ufpsmin <R},
(¢,r)€T (g,r)e

which is equipped with the complete distance

d(u,v) :== sup ||ul|za zr-
(g;r)el Frn)

For some ¢ > 0 small enough, let us define

N € N 1 €

ne= 25 (- ) e ()

N 1 € N 1 €

s —B+1< _2(—B+1)+6>’ T —ﬂ+1< +2<—ﬁ+1>—s>’
2Np 2Np

1 = y ro 1=

N+a+28+2(p—1)—c¢ N+a+28+2(p—1)+¢’

where v > 1 and 2 > 1. For all u,v € Bp(R), using the Strichartz estimate
(2.7) and Remark 2.16, we obtain

< — / ’
dd(w), 6(v)) Sallu = vl og g

I P (P —Y 1, |P—2 ;o
I ful? = Pl el 2l g g

Lo JolP) [l ™ P20 — |27 o~

alle =0l ot gy

ot 24 iy

I P _ p =Y |2 ! /
+ ||(I * [|ul [olP]) |z~ ul u||LZ?(LT2(\x|>1))

+ |(Lo # 0[P |2 P20 — |2z Y olP~ 20| o
I ol 20 a2l g

Sallu—v| o, Fallu—v| o , FIT+IT+IIT+IV.
Ly (L") Ly? (L"2)
Since l, > 1, then

T

< \"“

i
r < aTl% [lu—v|[gee(r2) < aT% d(u,v).

7l
J

allu— ol
LT

Let kj := s

I then
J

-Tr
o 1 1 -2 1
1+:+p+<+p +>.
i k1 r1
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Using the Mean Value Theorem and the Hardy—Littlwood—Paley inequality, one
gets

— —2 -2
LLS M M o< ol (el ™ + ol e = ol

T

2(p—1) 2(p—1
SNl + Tl = vl -
T
The condition N +a —+—2 > 0 implies 1 < r; < IV for some ¢ sufficiently small.
So, Whri «s L* and then

2 1) 1
ISl + Tl e = vl ]l -
T

Since p < p*, then for some ¢ sufficiently small we have (2p — 1)q§- < g;. Hence,

there exists p; > 0 such that % = 2pq Lt —. Using the Holder inequality, we
J

deduce

1< Tn 2p—1) _ < Tor B2 g
! (HUHUH Wl 1) + ”UHqu (Wlr) )Hu ’UHqu(Lrl) ~ 4 (u,v).

As above, the Hardy—Littlwood—Paley inequality gives
I <I(I p—1 p=171,, _ -1, |p—2 .
S0 (™ 4 o Y = oDl el 2l g g
2(p—1 2(p—1
SNle ™ + IRl = vlln ||y
T

2(p—1 L _
SNUlFE + Tl e = olln ]l g S T2 R*#7D d(u, v).

T

Now, in order to estimate the integrals on |z| > 1, we make use of 72,72 and g2
with € small enough. Thus,

1
IIT := ||(Io * [|uP = |[oP]))z| 7 |JulP 2yl » < Tv2 R?P=Y d(u, v),
(T = oPDll ol % (1.0)

IV = [(Ta* [o]?) [l ulP~2u — o] o]~
o fol)llal ™20 = Ja o0l gy g
< T B2 d(u, v).

In summary, we obtain
1 1 1 1
d(®(u), ®(v)) < (a7 + aT% + Tt R¥P~Y 4 7o R2P=D) d(u, v).
Taking v = 0, we get

sup || ®(w)pg(ry < sup [Uo()¥llLa,Lr
(¢,r)er (g,r)er

1 1 1 1
+C <aTq’1 R+aT% R+ Tr R?P7! 4 szRQp—1> .
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Now, it remains to estimate sup(y ,)er \|V<I>(u)||LqT(LT). For this purpose, let

V= sup [[V®(u)|ps iy — sup [[V(Uo()¥)llLeLr-
(¢,r)er (gr)€l

Thanks to the Strichartz estimate (2.7), one has

< , L U
V < a| V| T IV (Lo [ulP) ]l ull 2 1 )
+al|Vu V(Lo [ulP) |z~ |ulP
[Vl L% (17 el 1) H Vo [l fufP™ ul] L% (L7 (1)
Sal||lVv allV

u”L?’l(L*’1(|z\<1>>+ u L (L (Jo]>1))
| (Lo * [PVl | 7 |ufP

+ (o )l ™ = (o ) | 720l g g

+ | o [P~ V] ) o] 7P~

I PV HalP~t (T Py z| ulP2|V Lo .
R e e O T M A WP

We have

e

1
7/
J

: 1
Vaul| o o, < qudt<300<TR
Arguing as previously, by using the Hardy-Littlwood—Paley and the Holder in-
equalities, we obtain

i € 1 1
V < aT% R+ aT% R+ To R¥~ 4 To2 R%~!
+ (Lo * [Pz HulP~ Y
||( a | | )’ | | | H q1( L™1(|z]<1))

N Pl g

The assumption N > v + 1 implies vy > 1. We have 1+ £ = % + (% + 21;:1).

Taking into account Sobolev injections, then using the Hardy—Littlwood—Paley
and the Holder inequalities, we obtain

2p—1

(o )" a7y 1152 i P

7 (L1 (je]<1)) ™

2p—1
<Ml S THR
T

(et<ny [l 1 o
Ly

Also, we use vy, 12,72 and g2 to control integrals on |z| > 1. Then

Ioos lu®) e =YulP-1 <T”2RZP1
Lo a1l

In summary, we obtain

sup [[VO(u)||pazry < sup [[Uo(-)¥]l e, wrmy
(g,r)el (g,r)el
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1 1 1 1
+C (aT“'l R+aT% R+ Tr R 1 szRQP—l) )

In conclusion, the functional ® is a contraction of By (R) for some 7" > 0 small
enough. Hence, the fixed point argument proves the existence of a unique local so-
lution in Br(R) to the main problem (1.1). The uniqueness of maximal solutions
follows by previous computations and the standard translation argument.

6. Global solutions for large damping

The aim of this section is to prove Theorem 2.8 about the existence of a global
solution to (1.1) in the energy space for a large damping coefficient. Let a > 0,
and

weCr-(HY)n () LI(W')
(gr)er

be the maximal solution to (1.1). Let §; := qub( Y Due to Proposition 2.14, we

have
T* i
—ab;s 0. J
“Ua()¢‘|Lz_?*(Wl,7‘J) 5 </{; (& 9] ||UO(S)¢HI/€/1’TJ ds)
> x
—ab;s 0. J
S < / e[l ds)
0
+o00 %
Sl ([ o) 5 ke,
0 CLQJ
We deduce
10| Sl o 0y y o
“ Lo, (W) N ab; as a 0. .

Let T' € [0,7*). Then, by the Strichartz estimate (2.9) and the Hardy—Littlwood—-
Paley inequality, we obtain

) < I, D Y1, |P—2
lllgs wies ag<ayy = 196 1o bl P2l g g

S 1l A+ ML et el 22l o<y
_ 2(p—1
12l s <y Nl 32y o<1y
2p—1

— 2p—1
+ 12 oot el 1o S Il + ulygin Il g
T T

Since ql = —|— 2p 2 then, by the Holder inequality, we get
J
2(p—1)
HuHqu(Wl 1 (|z|<1)) S 10le + H“H p Lt HUHL‘JTl(WIM(|x\<1))'
Similarly,
2(p 1)

||UHL‘1T2(W1J2(|I\>1 Sl + ||UH %2 (ir2) HU||L‘1T2(WLT2(|;E\>1))-
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Taking p1; € R such that ui = % — %, one claims that p; > 1. Indeed, the
J J J

condition ”—lj > 0 is equivalent to q% > Tlfl’ which is satisfied because p; N <

p < p*. On the other hand, the condition i < 1 is equivalent to gjp > 2p —

1 which is satisfied because ¢; > 2. Now, applying the Strichartz estimate (2.8)
and then using the Hardy-Littlwood—Paley inequality yield

HUH 91 Wl 7‘1(|I|<1 S ”Ua(‘)wHL?(WLn)

T p —V|q P2 / ,
+ [ (La * [ufP) ]~ Pl LA (W (|z]<1))

2p—1
SNl oy oy + Iyl
T
2p—1
SNVl gy 0 gy

Since p;(2p — 1) = 0}, then

2p—1

< .
“u‘|L§1(W17T1(|m|<1)) S U )wl‘Lgl*(Wl,Tl) + HuHL?pl(le"1(|x|<1)).

Taking into account (6.1) and applying Lemma 2.20 with the previous estimate
for a large enough, we get

||u’|| 91 Wl 71(|x‘<1 S ‘|Ua()¢||L?1* (Wl,r'l) on [O’T*) (62)

Also,
Il 02 s oy S N0l gy 08 [0,77): (6.3)

For any (¢,7) € T', by using the Strichartz estimate (2.9) and the Hardy—
Littlwood—Paley iequality, one gets

lull Lo,y S Il an + (o [ulP) e[~ ulP~2

Vot ([ (T [ulP) 2]~ ulP~2ull g

UH q] '
L (W (|z]<1))

2Wh (|z|>1))

2 1
<rwwﬂl+uuwu?xiluMnm\ﬁ-+unru1x<1u|nm\ﬁ
(lz] (lz]
2 1)
wf+nnru@x>1numuq2+u|nk e T
2(J[>1) 2(|]
2 1
S el + uwlgnum<lumu?mﬂﬂ)
Vol s oy el

Taking into account (6.2) and (6.3), one gets

sup HUHLq wlr
(¢r)€T r(WH)

p—1) p 1)
C {WHHl + (HUH 91(W1 1 (je|<1)) + [|u H 2 (Wi (| |>1))> (qSB)pF HUHL‘? (Wt r)}
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1,r 1,r
U WE2) ) (q.r)er

_ 1 1
C{W”m + Il ((a01)2(171) * <a92)2<f>1>> e 03 (W“)}'

For a large enough, we obtain

_C“Mm+<WfWH AR >swnwﬁmu&

sup ||ul| e (W”) 2(p—1) CHwaII 1
(gr)er = Cllolln (@zel)zw—w + (a92)2(”_1)>

on [0,7"). (6.4)

Therefore, ||ull e (aty < 00 and then T" = +o0. This closes the proof.

7. Scattering

Our aim in this section is to prove Theorem 2.9. Namely, we prove scattering
for global solutions to (1.1) given by Theorem 2.8. Thanks to Proposition 2.14,
it is sufficient to show that

lim [|U-o(~0)u(t) il = 0.

t——+o0

For this purpose, we are going to prove that v(t) := U_,(—t)u(t) satisfies the
Cauchy criteria in H'. We have

t
o(t) =9 + ZA Ua(=5) (I * |u(s)[P) |z~ |u(s)["~?u(s) ds.

Taking ¢ > t, using the Strichartz estimate, the Hardy-Littlwood-Paley and the
Hoélder inequalities, we obtain

lo(®) = v@)lm S II/ ) (Lo * [u(s)P) ]|~ u(s)[P~2u(s)ds]| g1
S Ta* ufP) |2 fulP2u]| [qftﬁ W (< 1))
[ (Ta* ful?) |2~ P~ ?ull % Wb (el 1)
Il [tq(W“1<|x|<1 lelage iy
+HW@”

(W72 (2> 1) lellgey e

Thanks to (6.2), (6.3) and (6.4), we get

W E Loy WP (J2] < 1)) N LG |y (W) (7.1)
and
we LY o (W (el > 1) NLE | (W), (7.2)
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Therefore, the function v satisfies the Cauchy criteria in H' and then it is suffi-
cient to take

t—+o00

+o0
ug = lim v(t) = —I—i/o Ua(—5) (I * [u(s)|P)|z] Y |u(s) [P~ 2u(s) ds.

Now, we are to establish that the scattering mapping S is one-to-one. If uy €
H', we have to prove that there exists u € C(R,, H'), the solution to the first
equation of (1.1), such that (2.6) is verified. For this purpose, we use the fixed
point argument at infinity. Let us define

+o0
¢(u)(t) := Ua(t)us +i/t Ua(t = 5)(Ia * u(s)[") 2]~ |u(s)[P"*u(s) ds.

Let T' > 0 and Cy be the constant produced in the Strichartz estimate (2.9). We
can define

Bri={ue C([T,+00), H') | sup |ullps  (zry < 20n|us|m,
(grjer

Hu”qul,#oo)(Wl”"l(\x|<1)) < 2||Ua(')u+||L?,}’+OO>(W1W1)’
||U|’Lf%’+oo)(wl,r2(‘x|>l)) < 2||Ua(-)u+||L?7217+m>(wl,7-2)7

||uHL((I%“,+oo)(LT1(‘x|<1)) S 2||Ua(')u+HL?il",-&-oo)(LTl)’

(T, 400) (T',+00)

[[ull a2 (Lr2(|z)>1)) = 2[|Ua(-)us | a2 (LTz)}-

The set By is equipped with the complete [4] distance

d(u,v) = S lu—2llzg, . @
Since
Tgr-ir-loo “U‘l(')u+“L?;lp,+oo)(wl’T1(|x|<1)) =0
and
=0,

TETOO HUa(')u+HL?%’_'_OO)(W17T2(|I|>1))

then, by using the Strichartz estimate (2.8), the Hardy—Littlwood—Paley and the
Holder inequalities, for v € By with T' large enough, we get

< )
”Qb(u) ||L?T,+oo)(wl’rl(‘x|<1)) = ||Ua( )u+||Lt(9:}“,+oo)(W17r1)

+ C||(Io * [ufP) ||~ ulP~2ul|
[ (Lo * |ul?) |z~ ul HL?%,WO)(L%(‘“:KI))

+ OV (T * [ul?) 2|~ "))

wy

L7 1o0)

(L7 (|z|<1))
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oy F Clluf
ooy (WHTL) | L(T +oo)(

O YU (Duy |2
+oo)(W171) H () +”L(T+oo)(

< .
< [|Ua( )u+IIL§% WL (|z|<1))

< .
< [|Ua( )MHLE} W1 (e <1))

<2 . .
>~ ||Ua( )u+||L?%!+w>(W1’TI)

In a similar way, with T" large enough, we get
<2 . .
”gb(u) ||L?7217+Oo)(wl,r2(‘x|>l)) — ||UCL( )u+ ||L?%7+m>(wl,r2)
Furthermore,

loC)lipay | e gei<ay
< NUa()ug]|za iy F Ol (Ia * [ulP) |z JulP~2u /

S Walusrllg, oy + Clla* ful) |zl ™l HL?%M)( L (lal<)

1

< V(e ury + Cllul 28

L, +oo><W1vT1(|x|<1>)||“||L?%,+oo)<m<lwl<1>>

S ||Ua(-)U+HLq1 (Lr1 +2C|| || (T+Oo>(W1”"l(|x\<1))|’Ua(')u+||Ll(I%“,+oo)(LT1)

< 2||Ua(‘)u+||L?%,+w>(LT1)'
Similarly, for T sufficiently large, we obtain

loCliLe | @ gai>n) < 2M0aCIuslipe | @rm)-

(T +o0)

Once again, using the Strichartz estimate (2.9) and arguing as previously, for T
large enough, one obtains

sup |lul| g
(g,m)er Ftr oo (1)

< CON | ua |l g + |(Ta # |ufP) 2|~ P~ 2u)| o
(H e+ ([ Lo [ul?) 7 ul ||L?}’+Oo>(W1’T/1(\fC|<1))
+ | Iy * [ulP) || |ulP~2u)|

(o [uf”) ||~ ul HL‘(’;+OO)(W1”“'2(I:EI>1)>

2(p—1)
< Cn(|lu +2||u u
(sl + 2l (TW)(WL”)(@KU“ Iz o

[l

Wl,'rl)

+2u ||

Wl,rg))-
(T +o0)

a2 (
(Wl’""2)(\x|>1) (T, +00)

By the definition of By, for T sufficiently large, one has

1
sup ol ey < Olusls (1440 a2

(g,r)€l (Titoo L{h 4oy WHT1) (|21 <1)

+ 40y |ul*7Y

< 2Cn|lu .
(TW)(WW)W)) < 20y sl
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In conclusion, Br is conserved by ¢ for T sufficiently large. It remains then to
prove that ¢ is a contraction on Bp. Taking u,v € Brp, using the Mean Value
Theorem and computing as in Section 5, we obtain

d(p(u) — ¢(v))

< P [l =Y () |P—2,, PV |~ |02
SN )l a0 = (Lo x o)l P20l g

(T, +00)
A+ (Lo # |ufP) || ufP 20 — (In * [o]P) || o[P 20
A L e R A
(p—1)
< (b L L™ ey ) 1=l
2(p 1)
o (L AR AR | TR P
< | | Ua(Hu 2p=1) + |Ua()u 2 >du,v.
S (el IO L) dln)
Due to (6.1), one has ||[Ug(-)u|| o, L 5% Then
LT+oo)(W ) “
li U, = 0.
R CACTR Y

Consequently, the functional ¢ defines a contraction on Bp for T' large enough.
Thus, for some T’y > 0, ¢ admits a unique fixed point in By, which satisfies

+oo
Vi >Ty u(t)=Ug(t)us + Z/t Ua(t — 5)(Io * [u(s)[P)|z| ™ |u(s)|P~?u(s) ds.

(7.3)
Now, let us define 9 := U, (—T4)u(T4). Since
+oo
Ua(t)t = Ua(t) (uy + . Ua(=5) (I * [u(s)P) |z |u(s)[P~?u(s) ds)
+oo
= Ua(t)us +i/T Ua(t — 5)(La * [u(s)[P) ||~ |u(s) P~*u(s) ds,
then
+0o0
u(t) = Ua(t)y — Z/T Ua(t = 5) (Lo * [u(s)[P) |z u(s)[P~?u(s) ds

+oo
i / Ua(t — )T * fu(s)[P) 2~ u(s) P~ 2u(s) ds
= Uut)0 i [ Ut )T ¢ flo) el ulo) us) ds.

Hence, u resolves problem (1.1) on (7', +00), and by Theorem 2.8, u is a global
solution to (1.1) with the initial data 1. In addition, from (7.3), we deduce that

+oo
[u(t) = Ua(@)ut ||t = Z/t Ua(t = ) (Lo * [u(s) ") || 77 [u(s)[P~%u(s) ds

H1
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<

~

+oo
/ Ua(7 = 5) (Lo [u(s) ) 7 fu(s)["~u(s) ds

Ly o) (HY)
SN o [ul?) 2] ulP 2]y
(t,400)

+ 1o = [ul?) ]~ ul”~u|

(W1 (|a|<1))

q} !
L(t2,+oo) (W2 (|jz[>1))

[[ull o (Whr1)

(t +o0) Wl’”(|99\<1)) (t,+00)
+ HUHL?t27+OO) (Wl’r2(‘$|>1)) HUHLL(ItQ,Jroo)(Wl'Tz).

Thanks to (7.1) and (7.2), we get limy—, o ||u(t) — Uy (¢)u4 || g1 = 0. It remains to
prove the uniqueness of the solution u. Let v € C(Ry, H') be another solution
to the first equation in (1.1) such that

lim [[o(t) — Ua(t)us ]| s = 0.

t——4o00

With the integral formula of Duhamel, v satisfies

“+00
v(t) = Ug(t)uy —|—i/ Ua(t — s)(Iy * |u(s)|p)|x|_7|u(s)\p_2u(s) ds.
t
Arguing as previously yields

sup |Ju — vl

L’I‘
(gr)el +o0) (27
S (I8 ey + I i upeny ) T ol s
t+<>o) t+<>0)
+ r
<’ H (Hoo) WlaT2(\a:|>1 v HL<t+OO)(W1’T2(|a:|>1))> e = HL?3+ y(L72)
< (U us 27V + | Ua(Hu (p—1) )su u—v -
€ (O oy FITCE ) s =g,

The uniqueness follows as for large time,

sup [lu—wllge (1)

(q,r)er (t,+00)

1
sup HU—UHL(“r (L r) < )

(g,r)er

The continuity of the scattering mapping S is a consequence of previous compu-
tations.

8. Global solutions via invariant sets

In this section, we are going to prove Theorem 2.10. Namely, any solution to
(1.1) is global if the initial data belong to some invariant sets. For this purpose,
we need to prove at first some auxiliary results.
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8.1. Intermediate results. Let us start by showing the continuity of the
functional S, on H'.

Lemma 8.1. Let 1 + %X < p < p*. The functional v — S, (u) satisfies the
local Lipshitz condition on H?',

-1 —1
1Su() = Su(@)] S (lellz + Nollm + Jullft + NolBnt) = vl

on bounded subsets of H'.

Proof. Let
(1) = [ G faal JulPde = [ (o ol ol 7o d
We have
(1) = [ (Lo Q= oDl P di [ (o ol (P = 7)o
Using the Hardy-Littlewood—Sobolev inequality, we get

1S ™ N gy (Il + Mol ld? = ol -

11277 2y gty (Nl 4+ el ) l? = ol
S (Hlly ol ) What” = ol + (el + 012, ) Nel? = o).

Using to the Mean Value Theorem and taking the function x — 2" to be convex,
we have

el = ol < | (" + o) [u— of|

r

S H(\u|(p—1)r* + ,U|(p—1)r—) W

1
—1)r— —1)r—\
S (Il =07 4+ ol ) 7 flu = vl
—1 -1
S (a2 + 1ol )l = vl

-1 -1
S (Nl + o) llw = ol
Similarly,
-1 -1
el = 0Pl S (lellfat + 1ol5a") e = ol
This finishes the proof by combining the previous inequalities. O

Remark 8.2. The action K, is also continuous on H?!.

Lemma 8.3. For any w > 0, A, is an open subset in H".
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Proof. We have Sy (u) < (14 w)|ul|3,:, then Sy (u) < my, for [Jul 1 small
enough. Due to the Gagliardo—Nirenberg inequality, there exists C' > 0 such that

/le_w(fa * [ul?)|ul? dz < Cllu]|[|Vul|.
Therefore,
Ko () 2 min(Lw)ulf — Clll A 1Val® 2 Juln (min(1,w) - Clul32 )

Consequently, K,,(u) > 0 for ||u||z1 small enough. From the above, it follows
that A, contains an open small ball B(0,6) of H! centered on 0 and of radius
d > 0. According to the definition of m, if S,,(u) < m and K,,(u) = 0, then u =
0. Hence,

Ay = B(0,6)U{u € H' | Sy(u) < m and K, (u) > 0}.
By Lemma 8.1, the set A, is open in H'. O

Lemma 8.4. The set Ay, is invariant under the flow of (1.1).

Proof. Let ¢ € A, and u € Cp«(H') be the maximal solution to (1.1) em-
anating from 1. Since A, is open in H!, then u(t) € A, for a small value of
t > 0. Suppose there exists tog € (0,77*) such that u(t) € A, if t € [0,¢y) and
u(ty) does not belong to A,,. Since %S, (u(t)) = —2aK, (u(t)), then Sy (u(t)) is
non-increasing on [0, tp). By Lemma 8.1, the function t — Sy, (u(t)) is continuous
on [0, 7). Thus,

Vit € [0,t0] Sw(u(t)) < Sw(?) < my. (8.1)

Knowing that Ky, (u(tg)) < 0, with a continuity argument, there exists an instant
of time ¢t; € (0,%p) such that K, (u(t;)) = 0. By the definition of m, one has
My < S(u(ty)). This finishes the proof by a contradiction with (8.1). O

8.2. Proof of Theorem 2.10. Let w > 0, ¢ € A, and u € Cp+(H') be
the maximal solution with the initial data . By the previous lemmas, we have
Sw(u(t)) < my and Ky (u(t)) >0 for all ¢ € [0,7*). Then,

P wla®l + [ValP) = Su(u(t)) —  Ku(u(®) < Sufu(t)) < my.

Hence, sup;¢(o 7+ lu(t)||;, < oo and then T* = oco. O

9. Appendix
Recall the so-called Riesz potential inequality.

Lemma 9.1. Letd > 1, > 1,0 < a < g and%:%—%. Then I, : L1 —
L" is a bounded operator. Precisely, there exists Cqq,q > 0 such that

1o * fllr < Cd,a,q”fHQ'
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9.1. Proof of Proposition 2.17. Elementary computations give

1 1
<:>O<N(f—;)<1.

O<T<N—2 2

Then,

< /Ot e_“(t_s)Uo(t —s)f(s)ds

/t Ua(t —s)f(s)ds
0

LE(L7(Jx|<1)) LG (L™ (||<1))

T
S| @ hen s
0 [t —s|? L.
T
S| T O as]
Applying Lemma 9.1 with d = 1 and taking into account é + é(i — %) = i, we
obtain .
Ua(t —5)f(s)ds S WA :
’/0 LO.(L(|z]<1)) L (L7 (ja]<1))
Similarly for the integrals on |z| < 1. O

9.2. Proof of Corollary 2.19. If i+ Au+iau = f with the data 1, then,
by using Proposition 2.14 and the standard Strichartz estimates, one gets

t
follzgony S 100030y + | [ ot )50

La(Lr)

t
S 00y 0o+ [ 000 - )19
0

L(L™)
¢
< He—atUO(t)@ZJHLqT(U) + H/o Uo(t — s)(e—a(t—s)f(s)) ds

S e Vol g gy + 1™ SO g7
S Nl 1To@lrll g + lle=* 1S w1,
< 0@l g + 1f 1
SN g 1y + 11 g gy S N1+ £ g -

L5(L7)

&’
q
L T
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HoraTku moao aemiicpoBanoro pokKycyBaJIbHOTO
HeoHOpigHoro piBHgHHA [llokapaa

Lassaad Chergui

Crarrs npucsstiena (HOKyCcyBaJbHOMY HeoHOpigHOMY piBHsHHIO I10-
Kap/a 3 JIHIHHUM 1eMIIDyBaHHSIM:

it + Au 4 dau = —|x| 7 (I * [ul?)|[u|P~2u,

nea>010< vy <inf(N,2+ ). [iobanbue icnyBanus i po3ciloBanHs 10Be-
JIeH] JIJTs1 BITHOCHO BesuKoro siemiidysantst. s noBlibHOrO JemiidbyBaHHs
OJIEP>KAHO IJI00a/IbHe ICHYBaHHs, KOJIM II09aTKOBI JIaH] HajIexkaTh J0 MEeBHUX
iHBapiaHTHUX MHOXKWH.

Krouosi cioBa: nemmndopane pisugnnsa [lokapmaa, Besmke gemudyBaH-
Hsl, TJI00a/IbHe iCHYBaHHs, PO3CIIOBaHHs, iHBapiaHTHI MHOXKUHI
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