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Exact Solutions of Nonlinear Equations in

Mathematical Physics via Negative Power

Expansion Method
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In this paper, a direct method called negative power expansion (NPE)
method is presented and extended to construct exact solutions of nonlin-
ear mathematical physical equations. The presented NPE method is also
effective for the coupled, variable-coefficient and some other special types of
equations. To illustrate the effectiveness, the (2 + 1)-dimensional dispersive
long wave (DLW) equations, Maccari’s equations, Tzitzeica–Dodd–Bullough
(TDB) equation, Sawada–Kotera (SK) equation with variable coefficients
and two lattice equations are considered. As a result, some exact solutions
are obtained including traveling wave solutions, non-traveling wave solutions
and semi-discrete solutions. This paper shows that the NPE method is a
simple and effective method for solving nonlinear equations in mathematical
physics.
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1. Introduction

Constructing exact solutions of nonlinear mathematical physical equations is
of theoretical and practical significance. Since the famous Korteweg–de Vries
(KdV) equation was solved in 1967 [7], a large number of exact solutions like [2–
7,10,11,13–16,18–20,22–28,31,33,34,36,38,41,43] of nonlinear partial differential
equations (PDEs) have been found. The exp-function method [10] proposed by He
and Wu has been widely used for constructing exact solutions of nonlinear PDEs.
As for the last development of this method, we would like to mention that the
exp-function method [10] has been adopted to construct solitary solutions, blowup
solutions and discontinuous solutions of the generalized Boussinesq equation [12],
the fractal Boussinesq equation [12] and the generalized KdV–Burgers equation
[9].

In the process of trying to solve the problem of “expansion of intermediate
expression” caused by ansatz solution of the exp-function method [10], Zhang
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and Li [32], and Zhang, You and Xu [37] respectively put forward the direct
algorithm of the exp-function method and the simplest exp-function method,
which are extended and uniformly called in this paper the negative power expan-
sion method or the NPE method for short. In [32, 37], the KdV equation, the
(3+1)-dimensional Jimbo–Miwa (JM) and two special cases of the Mikhauilov–
Novikov–Wang (MNW) equations were taken as three examples of classical, high-
dimensional and high-order equations to test the validity of the primary form of
the NPE method. This paper will present and extend the NPE method to the
coupled, variable-coefficient and some other special types of equations, including
the (2+1)-dimensional DLW equations, Maccari’s equations, TDB equation, SK
equation with variable coefficients and two lattice equations.

The rest of this paper is organized as follows. In Section 2, we describe
the NPE method. In Section 3, we extend the NPE method to the coupled,
variable-coefficient and some other special types of equations. In Section 4, the
comparisons between the NPE method and the exp-function method are given.
In Section 5, some conclusions and discussions are given.

2. Description of the NPE method

For the given (m+ 1)-dimensional nonlinear PDE

P (u, ut, ux1 , . . . , uxm , utx1 , . . . , utxm , utt, ux1x1 , . . . , uxmxm , · · · ) = 0, (2.1)

where P is a polynomial of the dependent variable u and its derivatives with
respect to the independent variables {t, x1, x2, · · · , xm} or P can be transformed
into a polynomial after a suitable transformation of u. To determine u by the
NPE method, we take the following three steps:

Step 1. Supposing that the ansatz solution of (2.1) has the form

u =
n∑
i=0

uiφ
i−n, φ = eξ + a, (2.2)

where ξ and ui (u0 6= 0) are undetermined functions of {t, x1, x2, . . . , xm}, a is
the embedded constant parameter, n is a nonnegative integer determined by bal-
ancing the highest order nonlinear terms and the highest order partial derivative
terms in (2.1).

Step 2. Substituting (2.2) into (2.1) and collecting all the coefficients of φ−j(j =
0, 1, 2, . . .), then setting each coefficient of the same power of φ to zero to derive
a set of over-determined PDEs for ξ or some other undetermined parameters
introduced by using a necessary simplified form of ξ and ui.

Step 3. Solving the set of over-determined PDEs derived in Step 2 with the
help of Mathematica or Maple to determine ξ and ui, and finally, to determine
(2.2), namely a solution of (2.1).

We note here that if a = 1, then the NPE method described above corresponds
to its primary form [32,37].
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Theorem 2.1. Let the highest order nonlinear term and the highest order

partial derivative term in (2.1) be u
(s)
x1 and (u

(p)
x1 )q(u

(r)
x1 )luh respectively. Then the

nonnegative integer n in (2.2) has the following formula

n =
s− lr − pq
h+ l + q − 1

, (2.3)

where h, l, p, q, r and s are all nonnegative integers.

Proof. From (2.2), we have

u(s)x1 = −n(−n− 1) · · · (−n− s+ 1)u0 φ
−n−s φ′s + · · · , (2.4)

and therefore determine the highest negative orders of φ in u
(s)
x1 , (u

(p)
x1 )q and (u

(r)
x1 )l

as

deg(u(s)x1 ) = −n− s, deg[(u(p)x1 )q] = q(−n− p), deg[(u(r)x1 )l] = l(−n− r). (2.5)

At the same time, we have deg(uh) = −hn. Thus,

deg[(u(p)x1 )q(u(r)x1 )luh] = q(−n− p) + l(−n− r)− hn. (2.6)

So, when balancing u
(s)
x1 and (u

(p)
x1 )q(u

(r)
x1 )luh, we have

− n− s = q(−n− s) + l(−n− r)− hn, (2.7)

which is namely (2.3).

Theorem 2.1 shows that the NPE method for determining the value of n in
(2.2) is different from that of the auxiliary equation methods [23, 25, 27, 33–35,
38], in which the value of n is related to the auxiliary equations. The main
reason is that the expansions of the ansatz solutions for these two methods are
different. The ansatz solution (2.2) is a negative power expansion of φ, while the
corresponding ansatz solution of an auxiliary equation method is a polynomial
expansion of φ which satisfies an auxiliary equation.

For the KdV equation [1],

ut + 6uux + uxxx = 0, (2.8)

we can express its solution by

u =
u0

(eξ + a)2
+

u1
eξ + a

+ u2, ξ = kx+ ct+ w, (2.9)

where k, c and w are arbitrary constants and the functions u0, u1 and u2 are
determined as

u0 = −2k2e2ξ, u1 = 2k2eξ, u2 = −k
3 + c

6k
. (2.10)
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When a = ±1, we can write (2.9) as

u =
k2

2
sech2 ξ

2
− k3 + c

6k
, u = −k

2

2
csch2 ξ

2
− k3 + c

6k
, (2.11)

respectively. When a = 0, (2.9) is a constant solution u = −(k3+c)/6k. Selecting
k = ik̂ and c = iĉ, here and thereafter i2 = −1, we obtain two trigonometric
function solutions from (2.11),

u = − k̂
2

2
sec2

ξ

2
+
k̂3 − ĉ

6k̂
, u = − k̂

2

2
csc2

ξ

2
+
k̂3 − ĉ

6k̂
. (2.12)

Similarly, for the high-order equation [37],

ut =− u7x + 49uxuxxxx + 14uu5x + 84uxxuxxx − 70u3x

− 252uuxuxx − 56u2uxxx +
224

3
u3ux, (2.13)

which is a special case of the MNW equation [21], we have

u0 =
3k2

2
e2ξ, u1 = −3k2

2
eξ, u2 =

k2

8
, c =

k7

48
, (2.14)

and hence obtain a solution

u =
3k2e2ξ

2(eξ + a)2
− 3k2eξ

2(eξ + a)
+
k2

8
, ξ = kx+

k7

48
t+ w. (2.15)

As a high-dimensional model, the (3+1)-dimensional Jimbo-Miwa (JM) equa-
tion [32],

uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3uxz = 0, (2.16)

expresses its ansatz solution by

u =
u0
φ

+ u1, φ = a+ ekx+η, (2.17)

where k is a constant to be determined later, u0, u1 and η are undetermined
functions of {x, y, z, t}. We substitute (2.17) into the JM equation (2.16) and
then set the coefficients of φ−j (j = 0, 1, 2, . . . , 5) to be zeros. A set of PDEs is
derived, from which we have

u0 = 2keξ, u1 =
f ′3(z)y

k
− k3 + 2p

3k2
f1(y, z) +

1

k

∫
f1z(y, z) dy, (2.18)

η = f1(y, z) + f2(z) + pt, (2.19)

and therefore obtain a solution of the JM equation (2.16),

u =
2keξ

1 + eξ
+
f ′3(z)y

k
− k3 + 2p

3k2
f1(y, z) +

1

k

∫
f1z(y, z) dy, (2.20)

where ξ = kx + f1(y, z) + f2(z) + pt, f1(y, z), f2(z) are smooth functions of the
indicated variables, f ′3(z) = df3(z)/dz, k is a non-zero constant, and p is an
arbitrary constant.
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3. Extensions of the NPE method to other equations

3.1. Coupled equations. We first consider the (2+1)-dimensional DLW
equations [35],

uyt +Hxx +
1

2
(u2)xy = 0, (3.1)

Ht + (uH + u+ uxy)x = 0. (3.2)

Here we denote degH = m and deg u = n. Balancing uH and uxy, we have −n−
m = −n − 2, i.e, m = 2. At the same time, balancing Hxx and (u2)xy yields
−m− 2 = −2n− 2, i.e, n = 1. We suppose

H =
H0

φ2
+
H1

φ
+H2, (3.3)

u =
u0
φ

+ u1, (3.4)

where φ = eξ +a, ξ = kx+ ly+ ct+w, k, l, c and w are undetermined constants,
while H0, H1, H2, u0 and u1 are undetermined functions. Substituting (3.3) and
(3.4) into the DLW equations (3.1) and (3.2), then setting each of the coefficients
of φ−j(j = 0, 1, 2, · · · , 4) to be zero, we derive two sets of PDEs:

φ−4 : 6k2e2ξH0 + 3kle2ξu20 = 0,

φ−3 : − 2k2eξH0 + 2k2e2ξH1 + 2cle2ξu0 − kleξu20 + 2kle2ξu0u1 − 2keξu0u0y

− 4keξH0x − 2leξu0u0x = 0,

φ−2 : − k2eξH1 − cleξu0 − kleξu0u1 − leξu0t − ceξu0y − keξu1u0y − keξu0u1y

− 2keξH1x − leξu1u0x + u0yu0x − leξu0u1x + u0u0xy +H0xx = 0,

φ−1 : u0yt + u1yu0x + u0yu1x + u1u0xy + u0u1xy +H1xx = 0,

φ0 : u1yt + u1yu1x + u1u1xy +H2xx = 0,

φ−4 : − 6k2le3ξu0 − 3keξH0u0 = 0,

φ−3 : − 2ceξH0 + 6k2le2ξu0 − 2keξH1u0 − 2keξH0u1 + 2k2e2ξu0y +H0xu0

+ 4kle2ξu0x +H0u0x = 0,

φ−2 : − ceξH1 − keξu0 − k2leξu0 − keξH2u0 − keξH1u1 +H0t − k2eξu0y
+ u1H0x + u0H1x − 2kleξu0x +H1u0x +H0u1x − 2keξu0xy − leξu0xx = 0,

φ−1 : H1t + u1H1x + u0H2x + u0x +H2u0x +H1u1x + u0xxy = 0,

φ0 : H2t +H2xu1 + u1x +H2u1 + u1xxy = 0.

Solving the above sets of PDEs, we have

H0 = −2kle2ξ, H1 = 2kleξ, H2 = −1, u0 = ±2keξ, u1 =
±k2 − c

k
, (3.5)

and obtain the solutions of the DLW equations (3.1) and (3.2),

H = − 2kle2ξ

(eξ + a)2
+

2kleξ

eξ + a
+
±k2 − c

k
, (3.6)
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u = ± 2keξ

eξ + a
+
±k2 − c

k
, (3.7)

where ξ = kx+ ly + ct+ w, k 6= 0, l, c and w are all constants.
We next consider the Maccari’s equations [17],

iQt +Qxx +QR = 0, (3.8)

Rt +Ry + (|Q|2)x = 0. (3.9)

Supposing that

Q = u(x, y, t)ei(px+qy+ct+d), (3.10)

where p, q and c are undetermined constants, d is an arbitrary constant. Substi-
tuting (3.10) into the Maccari’s equations (3.8) and (3.9) yields

i(ut + 2pux) + uxx − (c+ k2)u+ uR = 0, (3.11)

Rt +Ry + (u2)x = 0. (3.12)

Letting ξ = k(x + ly − 2kt + w), here k and l are undetermined constants, w
denotes arbitrary constants, then we can transform (3.11) and (3.12) into

k2u′′ − (c+ k2)u+ uR = 0, (3.13)

(l − 2p)R′ + (u2)′ = 0. (3.14)

Integrating (3.14) with respect to ξ once and selecting the integration constant
as zero, we have

R = − 1

l − 2p
u2. (3.15)

Substituting (3.15) into (3.13) yields

l2u′′ − (c+ k2)u− 1

l − 2p
u3 = 0. (3.16)

Balancing u′′ and u3, we have −n− 2 = −3n, i.e., n = 1. Thus, we suppose

u =
u0
φ

+ u1, φ = eξ + a, (3.17)

where u0 and u1 are undetermined function of ξ. Substituting (3.17) into (3.16)
and setting each coefficient of φ−j (j = 0, 1, 2, 3) to be zero, we derive a set of
ordinary differential equations (ODEs):

φ−3 : 2e2ξu0 −
u30

l − 2p
= 0,

φ−2 : − eξu0 −
3u20u1
l − 2p

− 2eξu′0 = 0,

φ−1 : u0

(
−c− k2 − 3u21

l − 2p

)
+ u′′0 = 0,
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φ0 : − (c+ k2)u1 −
u31

l − 2p
+ u′′1 = 0.

Solving the above set of ODEs, we have

u0 = ±
√

2l − 4peξ, u1 = ∓
√

2l − 4p

2
, c = −1 + 2k2

2
, (3.18)

and hence obtain the solutions of the Maccari’s equations (3.8) and (3.9):

Q = ±
√

2l − 4p

(
eξ

eξ + a
− 1

2

)
e
i
(
px+qy− 1+2k2

2
t+d

)
, (3.19)

R = ∓2

(
eξ

eξ + a
− 1

2

)2

, (3.20)

where ξ = k(x+ ly − 2kt+ w), k, l, d and w are constants.

3.2. Special type equation. We have the following theorem for the special
type model—TDB equation.

Theorem 3.1. The TDB equation [8],

uxt = e−u + e−2u, (3.21)

has a pair of solutions

u = arcsinh
v−1 − v

2
, (3.22)

with

v = ± eξ

eξ + a
− 1± 1

2
, ξ = kx− t

k
+ w, (3.23)

where k 6= 0 and w are constants.

Proof. Taking the transformation

u = arcsinh
v−1(x, t)− v(x, t)

2
, (3.24)

we transform the TDB equation (3.21) into

− vvxt + vxvt − v3 − v4 = 0. (3.25)

Balancing vvxt and v4, we have −2n− 2 = −4n, i.e., n = 1. We suppose

v =
v0
φ

+ v1, φ = eξ + a, (3.26)

where ξ = kx + ct + w, k and c are undetermined constants, w is an arbitrary
constant, v0 and v1 are undetermined functions of {x, t}. Substituting (3.26) into
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(3.25) and setting each coefficient of φ−j(j = 0, 1, 2, . . . , 4) to be zero yields a set
of ODEs:

φ−4 : − cke2ξv20 − v40 = 0,

φ−3 : ckeξv20 − v30 − 2cke2ξv0v1 + 4v30v1 = 0,

φ−2 : ckeξv0v1 − 3v20v1 − 6v20v
2
1 + keξv1v0t − keξv0v1t + ceξv1v0x + v0xv0t

− ceξv0v1x − v0v0xt = 0,

φ−1 : − 3v0v
2
1 − 4v0v

3
1 + v0xv1t + v1xv0t − v1v0xt − v0v1xt = 0,

φ0 : v1v1xt − v1xv1t + v31 + v41 = 0.

Solving the above set of ODEs, we have

v0 = ±eξ, v1 = −1± 1

2
, c = −1

k
, (3.27)

and hence obtain the solutions (3.22).

3.3. Variable-coefficient equation. We have the following theorem for
the variable-coefficient model, namely the SK equation.

Theorem 3.2. The SK equation [30] with the variable coefficients

ut + f(t)u2ux + g(t)uxuxx + h(t)uuxxx + k(t)uxxxxx = 0, (3.28)

has a pair of solutions

u =
3p2ω(t)e2ξ

f(t)(1 + eξ)2
− 3p2ω(t)eξ

f(t)(1 + eξ)
+
p2ω(t)

4f(t)
, (3.29)

where

ξ = px+ p5
∫

12f(t)k(t) + g(t)ω(t)

8f(t)
dt+ w, (3.30)

ω(t) = −g(t)− 2h(t)±
√
θ(t), θ(t) = [g(t) + 2h(t)]2 − 40f(t)k(t), (3.31)

p and w are constants, and the coefficient functions f(t), g(t), h(t) and k(t)
satisfy the condition

20f2(t)k′(t) = ω(t){f ′(t)[g(t) + 2h(t)]− f(t)[g′(t)

+ 2h′(t)]}+ 20k(t)f(t)f ′(t). (3.32)

Proof. Balancing uxxxxx and uxuxx yield n = 2. We suppose

u =
u0
φ2

+
u1
φ

+ u2, φ = eξ + a, (3.33)

where ξ = px + q(t) + w, p and q(t) are undetermined constant and function
respectively, w is an arbitrary constant, u0, u1 and u2 are undetermined func-
tions of {x, t}. Substituting (3.33) into the SK equation (3.28) and setting each
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coefficient of φ−j(j = 0, 1, 2, . . . , 7) to be zero yield a set of PDEs. Under the
constraint (3.32), from the set of PDEs we have

u0 =
3p2ω(t)

f(t)(1 + eξ)2
, u1 = − 3p2ω(t)

f(t)(1 + eξ)
, u2 =

p2ω(t)

4f(t)
, (3.34)

q(t) = p5
∫

12f(t)k(t) + g(t)ω(t)

8f(t)
dt, (3.35)

and hence obtain the solutions (3.29).

Fig. 3.1: The bright-dark bell-soliton structure of the solution (3.29).

Figure 3.1 shows a bright-dark bell-soliton structure of the solution (3.29)
with “+” branch, where we select f(t) = t, g(t) = −2t − 4, h(t) = t + 2, k(t) =
−0.1t, a = 1, p = 1 and w = 0. It can be seen from Figure 3.1 that the coefficient
functions f(t), g(t), h(t) and k(t) affect the propagation speed of the soliton and
then the trajectory of the soliton forms a bright-dark bell spatial structure.

Fig. 3.2: The bright bell-soliton structure of the solution (3.29).
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Letting f(t), g(t), h(t) and k(t) be constants, in Figure 3.2, we show a typical
bright bell-soliton structure of the solution (3.29) with “+” branch by selecting
f(t) = −1, g(t) = −4, h(t) = 2, k(t) = 0.1, a = 1, p = 1 and w = 0.

3.4. Lattice equations. For the lattice equations, because of the complex-
ity of the iteration formulae of ansatz solutions, the steps of the NPE method for
solving the continuous equations should be adjusted.

Theorem 3.3. The lattice equation [29],

dun
dt

= (α+ βun + γu2n)(un−1 − un+1), (3.36)

has a pair of solutions

un = ±(ed − 1)
√
β2 − 4αβ

γ(ed + 1)(eξn + a)
− β(ed + 1)± (ed − 1)

√
β2 − 4αβ

2γ(ed + 1)
, (3.37)

where ξn = dn − {(ed − 1)(β2 − 4αβ)/[γ(ed + 1)]}t + w, α, β, γ, d and w are
constants.

Proof. Balancing dun/dt and u2n yield n = 1. We suppose

un =
un,0
φn

+ un,1, (3.38)

un+1 =
un+1,0

edφn + a(1− ed)
+ un+1,1, (3.39)

un−1 =
un−1,0

e−dφn + a(1− e−d)
+ un−1,1, (3.40)

where φn = eξn − a, ξn = dn + ct + w, d and c are undetermined constants,
w is an arbitrary constant, un,0 and un,1 are undetermined functions of {n, t}.
Substituting (3.38)–(3.40) into the lattice equation (3.36), replacing φ′n with φn−
a and eliminating the factors edφn + a(1 − ed) and e−dφn + a(1 − e−d) in the
denominators and then setting each coefficient of φ2−µn (µ = 0, 1, 2, . . . , 4) to be
zero yield a set of differential-difference equations (DDEs) for un,0, un,1, k and c.
Solving the set of DDEs, we have

un,0 = ±(ed − 1)
√
β2 − 4αβ

γ(ed + 1)
, un,1 = −β(ed + 1)± (ed − 1)

√
β2 − 4αβ

2γ(ed + 1)
, (3.41)

c = −(ed − 1)(β2 − 4αβ)

γ(ed + 1)
. (3.42)

and finally arrive at the solutions (3.37).

Theorem 3.4. The Toda lattice equation [39],

d2un
dt2

=

(
dun
dt

+ 1

)
(un−1 − 2un + un+1), (3.43)
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has a solution

un = − ac

eξn + a
+

[(c2 − 1)e2k + 2ek − 1]ξn
c(ek − 1)2

+ c0, (3.44)

where ξn = kn+ ct+ w, c, c0 and w are constants.

Proof. Balancing d2un/dt
2 and (dun/dt)un yield n = 1. We employ (3.38)-

(3.40) and substitute them into the Toda lattice equation (3.43), replacing φ′n
with φn − a and eliminating the factors edφn + a(1− ed) and e−dφn + a(1− e−d)
in the denominators and then set each coefficient of φ2−µn (µ = 0, 1, 2, . . . , 4) to
zero to obtain a set of DDEs for un,0, un,1, k and c. Solving the set of DDEs, we
have

un,0 = −ac, un,1 =
[(c2 − 1)e2d + 2ed − 1]ξn

c(ed − 1)2
+ c0, (3.45)

and finally arrive at the solution (3.44).

As pointed out by Zhang et al. in [40, 42], the exact solutions with external
linear functions possess a remarkable dynamical property, which is that a solitary
wave does not propagate in the horizontal direction as a traditional wave. In
Figure 3.3, a semi-discrete kink-soliton structure of the solution (3.44) with this
characteristic is shown by selecting a = 1, c = 1.06, d = 1 and c0 = 0.

Fig. 3.3: The semi-discrete kink-soliton structure of the solution (3.44).

4. Comparisons between the NPE and exp-function methods

To compare the NPE method and the exp-function method [10] more precisely,
we consider in this section the KdV equation (2.8) and the Burgers equation [1],

ut + 2uux − uxx = 0. (4.1)

Employing the NPE method to solve the KdV equation (2.8), we substitute
the ansatz solution (2.9) into the KdV equation (2.8) and then set each coefficient
of φ−j(j = 0, 1, 2, . . . , 5) to be zero, to obtain a set of PDEs [32]:

φ−5 : − 24k3e3ξu0 − 12keξu20 = 0, (4.2)
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φ−4 : 18k3e2ξu0 − 6k3e3ξu1 − 18keξu0u1 + 18k2e2ξu0x + 6u0u0x = 0, (4.3)

φ−3 : − 2ceξu0 − 2k3eξu0 + 6k3e2ξu1 − 6keξu21 − 12keξu0u2 − 6k2eξu0x

+ 6u1u0x + 6k2e2ξu1x + 6u0u1x − 6keξu0xx = 0, (4.4)

φ−2 : − ceξu1 − k3eξu1 − 6keξu1u2 + u0t + 6u2u0x − 3k2eξu1x + 6u1u1x

+ 6u0u2x − 3keξu1xx + u0xxx = 0, (4.5)

φ−1 : u1t + 6u2u1x + 6u1u2x + u1xxx = 0, (4.6)

φ0 : u2t + 6u2u2x + u2xxx = 0. (4.7)

Solving the above set of PDEs (4.2)–(4.7), we reach (2.10) and finally obtain the
exact solution of the KdV equation (2.8),

u = − 2k2e2ξ

(eξ + a)2
+

2k2eξ

eξ + a
− k3 + c

6k
, (4.8)

where ξ = kx+ ct+ w.
Following the steps of the exp-function method [10] for the KdV equation

(2.8), we suppose

u =
a0 + a1e

ξ + a2e
2ξ

b0 + b1eξ + b2e2ξ
, ξ = kx+ ct+ w, (4.9)

where a0, a1, a2, b0, b1, b2, k and c are all undetermined constants, w is an
arbitrary constant. Substituting the ansatz solution (4.9) into the KdV equation
(2.8) and eliminating the denominator (b0 + b1e

ξ + b2e
2ξ)4, then setting each

coefficient of ejξ (j = 1, 2, . . . , 7) to be zero, a set of algebraic equations is derived
as follows:

eξ : a1b
3
0c− a0b20b1c+ 6a0a1b

2
0k − 6a20b0b1k + a1b

3
0k

3 − a0b20b1k3 = 0, (4.10)

e2ξ : 2a2b
3
0c+ 2a1b

2
0b1c− 2a0b0b

2
1c− 2a0b

2
0b2c+ 6a21b

2
0k + 12a0a2b

2
0k − 6a20b

2
1k

− 12a20b0b2k + 8a2b
3
0k

3 − 4a1b
2
0b1k

3 + 4a0b0b
2
1k

3 − 8a0b
2
0b2k

3 = 0, (4.11)

e3ξ : 5a2b
2
0b1c+ a1b0b

2
1c− a0b31c+ a1b

2
0b2c− 6a0b0b1b2c+ 18a1a2b

2
0k + 6a21b0b1k

+ 12a0a2b0b1k − 6a0a1b
2
1k − 12a0a1b0b2k − 18a20b1b2k + 5a2b

2
0b1k

3

+ a1b0b
2
1k

3 − a0b31k3 − 23a1b
2
0b2k

3 + 18a0b0b1b2k
3 = 0, (4.12)

e4ξ : 4a2b0b
2
1c+ 4a2b

2
0b2c− 4a0b

2
1b2c− 4a0b0b

2
2c+ 12a22b

2
0k + 24a1a2b0b1k

− 24a0a1b1b2k − 12a20b
2
2k + 4a2b0b

2
1k

3 − 32a2b20b2k
3 − 4a0b

2
1b2k

3

+ 32a0b0b
2
2k

3 − 3keξu1xx + u0xxx = 0, (4.13)

e5ξ : a2b
3
1c+ 6a2b0b1b2c− a1b21b2c− a1b0b22c− 5a0b1b

2
2c+ 18a22b0b1k + 6a1a2b

2
1k

+ 12a1a2b0b2k − 6a21b1b2k − 12a0a2b1b2k − 18a0a1b
2
2k + a2b

3
1k

3

− 18a2b0b1b2k
3 − a1b21b2k3 + 23a1b0b

2
2k

3 − 5a0b1b
2
2k

3 = 0, (4.14)

e6ξ : 2a2b
2
1b2c+ 2a2b0b

2
2c− 2a1b1b

2
2c− 2a0b

3
2c+ 6a22b

2
1k + 12a22b0b2k − 6a21b

2
2k

− 12a0a2b
2
2k − 4a2b

2
1b2k

3 + 8a2b0b
2
2k

3 + 4a1b1b
2
2k

3 − 8a0b
3
2k

3 = 0, (4.15)
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e7ξ : a2b1b
2
2c− a1b32c+ 6a22b1b2k − 6a1a2b

2
2k + a2b1b

2
2k

3 − a1b32k3 = 0. (4.16)

Then solving the above set of algebraic equations (4.10)–(4.16), we have

a0 = −b0(k
3 + c)

6k
, a1 =

b1(5k
3 − c)

6k
, a2 = −b

2
1(k

3 + c)

24b0k
, b2 =

b21
4b0

, (4.17)

where b0 and k are non-zero constants, b1 and c are arbitrary constants. We thus
obtain an exact solution of the KdV equation (2.8):

u =
− b0(k3+c)

6k + b1(5k3−c)
6k eξ − b21(k

3+c)
24b0k

e2ξ

b0 + b1eξ +
b21
4b0

e2ξ
, ξ = kx+ ct+ w. (4.18)

It is easy to see that the solution (4.18) can be rewritten as

u = −k
3 + c

6k
+

2k2eξ

2b0
b1

+ eξ
− 2k2e2ξ

(2b0b1 + eξ)2
, ξ = kx+ ct+ w, (4.19)

which is the obtained solution (4.8) as long as 2b0 = a0b1.
The above comparison shows that although the solution processes of the NPE

method and the exp-function method [10] are similar and both can get the same
solution of the KdV equation (2.8), the PDEs (4.2)–(4.7) are simpler than the
algebraic equations (4.10)–(4.16). The main reason is that the NPE method
collects the coefficients of φ−j = (eξ + a)−j (j = 0, 1, 2, . . . , 5), while the exp-
function method [10] collects the coefficients of ejξ (j = 1, 2, . . . , 7). Besides,
both the numbers of the undetermined parameters and the equations solved in
the PDEs (4.2)–(4.7) are less than those in the algebraic equations (4.10)–(4.16).
This makes the calculation of solving (4.2)–(4.7) less than that of solving (4.10)–
(4.16) although (4.2)–(4.7) are PDEs and (4.10)–(4.16) are algebraic equations.

Let us take the Burgers equation (4.1) as another example for comparison.
In this example, we firstly take the traveling wave transformation

ξ = kx+ ct+ w (4.20)

before solving it by the NPE and exp-function methods, here k and c are all
undetermined constants while w is an arbitrary constant. Then the Burgers
equation (4.1) is transformed into

cu′ + 2kuu′ − k2u′′ = 0. (4.21)

Integrating (4.21) with respect to ξ once and setting the integration constant as
A, we have

cu+ ku2 − k2u′ −A = 0. (4.22)

Secondly, we use the NPE method to solve (4.22). Balancing u′ and u2 give
n = 1. We then suppose

u =
u0
φ

+ u1, φ = eξ + a, (4.23)
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where u0 and u1 are undetermined functions. Using the ansatz solution (4.23),
we transform (4.22) into

cu1 + ku21− k2u′1 +
c2

4k
− k

3

4
+
cu0
φ

+
2ku0u1
φ

− k
2u′0
φ

+
k2eξu0
φ2

+
ku20
φ2

= 0. (4.24)

Then setting each coefficient of φ−j(j = 0, 1, 2) in (4.24) to be zero, we derive a
set of ODEs as follows:

φ−2 : k2eξu0 + ku20, (4.25)

φ−1 : cu0 + 2ku0u1 − k2u′0, (4.26)

φ0 : cu1 + ku21 − k2u′1 +
c2

4k
− k3

4
. (4.27)

Solving the above set of ODEs (4.25)–(4.27), we have

u0 = −keξ, u1 =
k2 − c

2k
, A =

k4 − c2

4k
, (4.28)

and hence obtain an exact solution of the Burgers equation (4.1),

u = − keξ

eξ + a
+
k2 − c

2k
, ξ = kx+ ct+ w, (4.29)

where k 6= 0 and c are constants.

Finally, we solve (4.22) by using the exp-function method [10]. Supposing
that

u =
a0 + a1e

ξ + a2e
2ξ

b0 + b1eξ + b2e2ξ
, (4.30)

we transform (4.22) into

1

(b0 + b1eξ + b2e2ξ)2

(
−Ab20 + a0b0c− 2Ab0b1e

ξ + a1b0ce
ξ + a0b1ce

ξ

−Ab21e2ξ − 2Ab0b2e
2ξ + a2b0ce

2ξ + a1b1ce
2ξ + a0b2ce

2ξ

− 2Ab1b2e
3ξ + a2b1ce

3ξ + a1b2ce
3ξ −Ab22e4ξ + a2b2ce

4ξ

+ a20k + 2a0a1keξ + a21ke2ξ + 2a0a2ke2ξ + 2a1a2ke3ξ

+ a22ke4ξ − a1b0k2eξ + a0b1k
2eξ − 2a2b0k

2e2ξ

+2a0b2k
2e2ξ − a2b1k2e3ξ + a1b2k

2e3ξ
)

= 0. (4.31)

Then, eliminating the denominator (b0+b1e
ξ+b2e

2ξ)2 and setting each coefficient
of ejξ (j = 0, 1, 2, . . . , 4) to be zero, we derive a set of algebraic equations as
follows:

e0 : −Ab20 + a0b0c+ a20k, (4.32)

eξ : − 2Ab0b1 + a1b0c+ a0b1c+ 2a0a1k − a1b0k2 + a0b1k
2 = 0, (4.33)
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e2ξ : −Ab21 − 2Ab0b2 + a2b0c+ a1b1c+ a0b2c+ a21k + 2a0a2k

− 2a2b0k
2 + 2a0b2k

2 = 0, (4.34)

e3ξ : − 2Ab1b2 + a2b1c+ a1b2c+ 2a1a2k − a2b1k2 + a1b2k2 = 0, (4.35)

e4ξ : −Ab22 + a2b2c+ a22k = 0. (4.36)

Solving the above set of algebraic equations (4.32)–(4.36) yields

a0 =
(c− k2)[4a1b1ck + 4a21k

2 + b21(c
2 − k4)]

8b2k5
, a2 = −b2(k

2 + c)

2k
, (4.37)

b0 = −4a1b1ck + 4a21k
2 − b21(c2 − k4)

4b2k4
, A =

k4 − c2

4k
, (4.38)

where a1, b1, b2 and k 6= 0 are constants. Thus we obtain an exact solution of
the Burgers equation (4.1),

u =

(c−k2)[4a1b1ck+4a21k
2+b21(c

2−k4)]
8b2k5

+ a1e
ξ − b2(k2+c)

2k e2ξ

−4a1b1ck+4a21k
2−b21(c2−k4)

4b2k4
+ b1eξ + b2e2ξ

, (4.39)

where ξ = kx+ ct+ w. The solution (4.39) can be further simplified to

u =
k2 − c

2k
− keξ

b1c+2a1k+b1k2

2b2k2
+ eξ

, ξ = kx+ ct+ w. (4.40)

Obviously, if we let 2ab2k
2 = b1c+ 2a1k+ b1k

2, then the solution (4.29) becomes
the solution (4.40).

5. Conclusions and discussions

In summary, we have presented and extended the NPE method to the (2+1)-
dimensional DLW equations, Maccari’s equations, the TDB equation, the SK
equation with variable coefficients and two lattice equations. As a result, some
exact solutions, including traveling wave solutions, non-traveling wave solutions
and semi-discrete solutions, are obtained.

The NPE method does not need to go through the traveling wave transfor-
mation process. Its advantages mainly lie in the following:

1) compared with the exp-function method [10], there are fewer parameters
to be determined, the speed of “expansion of intermediate expression” in the
calculation process is slow;

2) compared with the Painlevé truncated expansion method [1], the process
of analyzing resonance points is not required for the NPE method and the ansatz
solution of the NPE method is not an infinite expansion but a simple and spe-
cific expression φ = eξ + a in advance, which makes the derivatives of φ with
respect to ξ be eξ, and thus reduces the complexity of calculation caused by the
undetermined φ in the process of calculation of the Painlevé truncated expansion
method;
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3) compared with the homogeneous balance method [43], the assumed expan-
sion form of the ansatz solution of the NPE method is easy to be drawn up by the
balancing process, and there is no need to go through the homogeneous balance
method to find the logarithmic function in most cases in advance for determining
the assumed expansion of the ansatz solution;

4) compared with the auxiliary equation method [34], the NPE method does
not involve the auxiliary equation that the auxiliary equation method needs to
use in balancing the expansion order of the ansatz solution or in the process of
substituting the ansatz solution into the equation, and the final solution of the
NPE method does not require any special solutions of the auxiliary equation.

As for disadvantages of the NPE method, there are two of them:

1) there are relatively fewer types of solutions obtained due to the hypotheti-
cal form of φ in advance, although the obtained solutions expressed by exponential
functions can be transformed into hyperbolic function solutions and trigonomet-
ric function solutions by appropriate deformations, other types of solutions like
Jacobi elliptic function solutions can not be constructed;

2) the undetermined coefficients embedded in the ansatz solutions are all
functions of independent variables, which to some extent increase computational
complexity of solving the transformed equations of the given equations as the
transformed equations are generally PDEs (ODEs) or DDEs but not algebraic
equations.
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Точнi розв’язки нелiнiйних рiвнянь в математичнiй
фiзицi за методом негативного розширення

потужностi
Bo Xu and Sheng Zhang

У статтi представлено прямий метод, що називається методом нега-
тивного розширення потужностi (НРП), який застосовано для побудови
точних розв’язкiв нелiнiйних рiвнянь математичної фiзики. Запропоно-
ваний метод (НРП) є також ефективним для зв’язаних рiвнянь, рiв-
нянь зi змiнним коефiцiєнтом та деяких iнших спецiальних видiв рiв-
нянь. Щоб показати ефективнiсть даного методу, було розглянуто (2 +
1)-вимiрне дисперсiйне рiвняння для довгої хвилi, рiвняння Маккарi,
рiвняння Цицейки–Додда–Буллоу, рiвняння Савада–Котера зi змiнни-
ми коефiцiєнтами та два рiвняння решiтки. У результатi одержано точнi
розв’язки, включаючи розв’язки рiвняння бiжної хвилi, рiвняння небi-
жної хвилi та напiвдискретнi розв’язки. У статтi показано, що метод
НРП — це простий та ефективний спосiб розв’язку нелiнiйних рiвнянь
в математичнiй фiзицi.

Ключовi слова: точний розв’язок, метод НРП, (2+1)-вимiрне диспер-
сiйне рiвняння для довгої хвилi, рiвняння Маккарi, рiвняння Цицейки–
Додда–Буллоу, рiвняння Савада–Котера зi змiнними коефiцiєнтами, рiв-
няння решiтки
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