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This is a sequel to [2] where the prescribed o-curvature problem on the
standard sphere was studied under the hypothesis that the flatness order
at critical points of the prescribed function lies in (1,n — 20]. We provide
a complete description of the lack of compactness of the problem when the
flatness order varies in (1,7n) and we establish an existence theorem based on
an Euler—Hopf type formula. As a product, we extend the existence results
of [2,17,18] and deliver a new one.
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1. Introduction and main results

In this paper, we are interested in a critical fractional problem arising in
conformal differential geometry. Namely, we consider the problem of existence
of conformal metrics with prescribed fractional order curvatures on the unit n-
dimensional sphere. Let S" = {z € R"*! | |2| = 1},n > 2, endowed with the
standard metric ggn = Z?jll dz?. Let g € [gsn], the conformal class of metrics

4
be associated to ggn and write g = un-20 ggn, where o € (0,1) and u is a smooth
positive function on S™. The fractional curvature R of order o for (S™, g) called
also o-curvature is given by

_ n+420

Ry =u" n=2 Py(u), (1.1)
where
I'(B+1 —1\?
PU:—( +§+U), B=|—Agen + :

I' is the Gamma function and A, is the Laplace-Beltrami operator of (5", ggn).
The conformal fractional operator P, can be considered as the pull back operator
of the fractional Laplacian (—A)? on R" via the stereographic projection.
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The prescribed o-curvature problem on the sphere S™ can be described by
the following question: For which function K : S® — R, there exists a conformal
metric g € [gsn] such that the associated o-curvature function R is equal to K7
According to (1.1), the problem is equivalent to solving the following fractional
Nirenberg equation

n+2o0

P,u=c¢(n,0)Kur-2s, u>0 onS", (1.2)

where ¢(n, o) = EE%J_FZ;
2

Equation (1.2) and related fractional problems have been the target of inves-
tigations during the last several years because they have proved to be of great
importance in geometry, analysis and physics (see [1,2,9,10,15,16,19,22-25, 28]
and the references therein).

In general, equation (1.2) may have no solution. Besides the necessary condi-
tion that the function K has to be positive somewhere, there is a Kazdan—Warner
type obstruction found in [17]: if w solves (1.2), then

_2n
/ (Vgan K, Vgen &) un—27 d¢ = 0.

This identity gives rise to many examples of function K for which (1.2) has no
solution, see [17].

There have been many studies devoted to the existence results trying to un-
derstand under what conditions equation (1.2) is solvable. See, for example, the
works of [1,13,26] under a “non-degeneracy” condition on K, [2,17,18] under a
suitable “S-flatness” condition on K and [12,20] for K = 1.

This paper is a continuation of the work of [2]. Therefore, throughout this
paper, we assume that K satisfies the following S-flatness hypothesis:

(f)g: K : S* — R,n > 2 is a Cl-positive function such that near each of its
critical point y there exists a real number 5 = 3(y) € (1,n — 20] such that
system centered at y in some geodesic normal coordinates and the following
expansion holds

K(z)=K(y) + Y bl —y)il’ + Rz —y),
k=1

where by = by(y) #O0 forall k =1,...,n, > p_; bi(y) # 0, and

(8]
Z IVSR(z — y)||z — y[* P = o(1) as  tends to y.
s=0

We point out that problem (1.2) was first addressed in [17] and [18] under the
above (f)s condition. In these two seminal papers, Jin, Li, and Xiong where able
to obtain an a priori restriction for solutions and derive an index-counting criteria
for existence of solutions when the flatness order § = S(y) lies in (n — 20,n) at
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any critical point y of K. Their approach is based on tricky variational tools and
blow up subcritical approximations. Later in [2], the authors studied problem
(1.2) under (f)s condition when the flatness order 5 = B(y) lies in (1,n — 20] at
any critical point y of K. The situation is different in this case. More precisely,
when S(y) € (n — 20,n) at any critical point y of K, a sequence of subcritical
solutions cannot blow up at more than one point (see [17,18]). However, if 5(y) €
(1,n — 20] at any critical point y of K, there could be blow up at many points.
The complete description of the critical points at infinity (blow up points) in the
later case with the related index-counting criteria of the existence of solutions
were given in [2]. The method of [2] is based on the critical points at infinity of
A. Bahri [4,5].

The purpose of the present paper is to study equation (1.2) when the pre-
scribed function K is flat near its critical points for an order g € (1,n). We
are then mainly interested in the statement when the function K admits critical
points of flatness order in (1,n — 20] and others of flatness order in (n — 20,n).
This leads to a new interesting phenomenon drastically different from the pre-
vious ones. Indeed, when studying the lack of compactness of the problem and
trying to identify the location of the critical points at infinity of the associated
variational structure, it turn out that the mutual interaction among two different
bubbles (solutions of (1.2) when K =1 on S™), dominates the self interaction of
the bubbles if f(y) € (n — 20, n) for any critical points y of K. If 5(y) € (1,n —
20) for any critical points y of K, the reverse phenomenon happens. While if
B(y) = n — 20 for any critical points y of K, we have a phenomenon of balance.

Now if 8 varies in (1,n), particularly if we single out two bubbles at two
critical points y; and y; of K with B(y;) € (1,n — 20] and B(y;) € (n — 20,n),
the above three phenomena may occur, and each phenomenon (as we will see in
Section 3 of this paper) will be related to the sign of

8(0) + Blyy) — 27W)

We first recall the existence results of [2,17,18]. Let

K={yeS"|VyK(y) =0},

’C+—{y€’C\—ibk(y)>0},
k=1

K<n2={y € K| B(y) € (1,n - 20]}
Ksn—2o ={y € K| B(y) € (n—20,n)}.
For each p-tuple 7, = (y1,...,Yp), p > 1, of distinct critical points of K such

that 5(y;) = n — 20 for all i = 1,...,p, we associate a p X p symmetric matrix
M(7p) = (mij)1<izj<p by denoting

n—2 =i ()
2 ' K(yi)%

mi; = m(Yi, Yi) = , 1<i<p,
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~ =20 G iy Yj . .
mij = m(yi,y;) = ¢2 2 (v ;) —y 1 <i#j<p,

(K(yi)K(yj)) v

where
1

G(y“y]) = n—=20 )
(1 —cosd(yiy;)) =

2n B(yi) 2n dx
c; =cl / 7|x1| dx, é=cl > / T ——
0 e (U 2 O Jr (1 |a2) EE

Here x; is the first component of x in the geodesic normal coordinate system,
and ¢g is a fixed positive constant defined in Section 2.

(H1) Assume that the first eigenvalue p(7,) of M (7,) is different to zero for any
M(7p).

Let CZ,_,, be the set of 7, = (y1,...,yp) € (K<n—20 NKT)” such that y; #

yj for all 1 <i # j < pand p(yiy,---,%,) > 0 for i, ...y, satisfying B(y;;) =
n—20,p>1. For any y € K, let

i(y) = #{br(y), 1 < k <, bi(y) <0}
Theorem 1.1 ([17,18]). Assume that K satisfies (f)s-condition, 8 € (n —

20,n). If ~
Z (_1)71—1(31) # 13

yEK>n72a ﬂ’C+

then (1.2) has a solution.

For any 7, = (y1,...,yp) € KP,p > 1, we set
~ p ~
i(p)) =p—1+ Zn —i(yj)-
j=1
Theorem 1.2 ([2]). Assume that K satisfies (Hy) and (f)gs-condition, 5 €

(I,n —20]. If -
> (UL

TPGC%OTH%
then (1.2) has a solution.

We are now in position to state our main theorem. Let y € K<, _9,. We

denote
_ o BWBa) _ 0} '

n— 20

B, - {q € Ken-20 | B(y) + B(a)

2 e assume that for any 7, = (gq1,...,¢qs) € , 1 < s < such that
H>) W hat f D By)®, 1 1B, h th
¢ # q; for all 1 <i# j <s, we have
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28(y)
ifw@wzgmgm <m%f”a%w o
- " K(g)' Bla)ei (K (g)K(y) * > r_ be(a)]
N c(y)B(y) Z’zﬁiik(y) L0,
nK(y)'t e
where ¢(y fRn %

We point out that an assumption like (Hz) was used for the scalar curvature
problem on S™ as a standard assumption to guarantee the existence of solution
(see [11, Theorem 10.3] and [14]).

Set

C>* = {(y,Tp) ly € (Ksn_2o NKT), = (21,5, 2p) €CZ, 20,

By)B (=)

B(y) + B(z) — 2 oy 0 1§i§p}.

We shall prove the following theorem.

Theorem 1.3. Assume that K satisfies (H1), (Hz2), and (f)s-condition,
ge(l,n). If

Z (_1)71—?(1/) + Z (_1);(717) + Z (_1)7(977'17) 7& 17

ye(’C>n72UmK+) Tpec<n 20 (y7TP)€COO
then (1.2) has a solution.

In the next section, we state some preliminary results. In Section 3 we describe
the lack of compactness of the problem by identifying the location of all the critical
points at infinity of the associated variational functional. Finally, in Section 4 we
prove our existence theorem.

2. Preliminaries

Problem (1.2) has a variational structure. The variational space is H?(S™).
It is the Sobolev space defined by the closer of C*°(S™) by the norm

1
2
full = ([ Pruudvys, )

The variational functional associated to (1.2) is
]
n—20

(fS" Ku%dvgsn) !

J(u) =

ue Ho(S™).

Let
S={ue H(S") |||ul| =1} and X" ={ueX,u>0}.
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Up to a multiplicative constant, a solution of (1.2) is a critical point of J subjected

to the constraint u € ¥F. Since the Sobolev embedding H(S™) «— L%(S”) is
not compact, the functional J does not satisfy the Palais—Smale condition. In
order to describe the sequences which violate the Palais—Smale condition, we first
recall the classification result of the solution of (1.2) when K =1 on S™.

For any a € S™ and A > 0, let

n—2o

)\ 2
) = v
(@) () =co <)\2 + 1+ (1 = A2)cosd(a, $)> e

where d is the distance induced by the standard metric ggn and c¢g is a fixed
constant chosen so that §(, ) solves

n+20 n
P,u=un-20, u>0 on$S

(see [12,20]). Let p € N* and u = Y°V_| aid(q, »,) +v € HO(S™), oy > 0, \; >
0, a; € S™ for all i = 1,...,p. We say that v €(1})) if v satisfies the following
assumption

ol a;,\; ol Qi) .
(6 (0) =0 for g & {Gn g, D 1)

Here (-, -) denotes the inner product of H?(S™) defined by

(u, w) = Pruwdvgg, .
Sn
Let p € N* and € > 0. Let V(p,¢e) be the set of u € ¥ such that there exist
Ay Ap > ¢! and ai,...,op >0 that
P
u = Z aié(%)\i) + v,
i=1

n A
where |[v]| <&, v e (W), |[J(u)m20a > K(a;) —1] <eforalli=1,...,p and
g2—n

AZ‘ A‘ 2 . .
€ij = <)\] /\*Z + )\i)\jd(ai,aj)2> <e forall1<iz#j<p.

Proposition 2.1 ([21,27]). Let (ux)r be a sequence in XF such that J(uy)
is bounded and 0J(uy) tends to zero. If (uy)y has no convergent subsequence in
¥t, then there exist an integer p € N*, a sequence (g,) > 0 as e, — 0 and a
subsequence of (uy)y denoted again (uy)y such that ug € V(p,ex) for all k € N.

The following Morse Lemma completely gets rid of the v-contributions.

Proposition 2.2 ([5,6]). There exists a C*-map associating v = v(a, a, \) to
each (e, ai, \;) such that Y0, @i6(a;7;) € V(p,€), where v is unique and satisfies

p p
J Zaid(a“)\i) +9 | = min J Zo‘i(s(ai,&) +v].
P ve(Vp) i1
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Moreover, there exists a change of variables v — v — V such that

p P
J <Z i0(a; \) T U> =J (Z @i0(a;0;) T 17) +IVI2.
=1

i=1
Furthermore, under (f)g-condition, 1 < 8 < n, there exists ¢ > 0 such that the
following estimate holds:

p n+2o
_ 1 1 IVK(a;)| (log\;) 2=
ol < e (S + 55+ el (R
i=1 )‘z? )\i ! /\i 2
2(nt220) — 1\ nt20 )
4o d Direny 7 (loge) T if n> 6o,
_ n—2o .
Zk;&ﬂkr(log%,}) n if n < 60.

We now state the definition of a critical point at infinity.

Definition 2.3 ([4]). A critical point at infinity of J is a limit of a non-
compact flow line u(s) of the equation

u(s) = —0J(u(s)), u(0)=uge T,

If we assume that (1.2) has no solution, according to Propositions 2.1 there exist
p € N* and a positive function £(s) which tends to zero as s tends to +oo such
that

p
u(s) = Zai(s)é(ai(s)7M(s)) +v(s) € V(p,e(s)) if sis large.
i=1
Setting @; = lim «y;(s) and @; = lim a;(s), we denote a critical point at infinity by
P

Qib(g,00) OF (A1, .-, 0dp)co-

The following two results rule out the existence of critical points at infinity
of Jin V(p,e) \ Vs(p, ), where 0 is a small positive constant which depends only
on K and

P
Vs(p,e) = {U = Zaié(ai,)\i) +v e V(pe) |
i=1

Vi=1,...,pIy e CVI<i#j<p (Ailai—yi<5andyi#yj)}-

Proposition 2.4. Assume that K satisfies (f)s-condition, 8 € (1,n). Let

B =max{B(y),y € K}.

There exists a bounded pseudo-gradient Wy in V(p,e) \ Vs(p,e), p > 1, and a
positive constant ¢ independent of

p
w= Zaid(%)\i) € Vi(p,e)\ Vs(p,e)
i=1

such that
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(i) (9J(w), Wo(w) < —c | > (Aﬁ 4 |VK a;) ) e
=1 )

J#i
(i) <8J<u 5, Wolu) + W(Wo(u))>
< c(i( P TR 5.

i=1 j#i
(iii) Along any flow line

p

u(s) =Y ai(8)Sais)nes)  of Wo,

=1
maxi<j<p Ai(s) is bounded as long as u(s) remains in V(p,e) \ Vs(p,e).

Proof. The construction of Wy proceeds exactly as the one of [2]. More
precisely, see the construction in the regions V(p,e) and Vi*(p,e) in [2, pp.
1300-1304]. O

The above-mentioned result shows that no concentration phenomenon hap-
pens in V(p,e)\ Vs(p, €), since any flow line of Wy remains in a compact set. This
allows us to derive the following corollary.

Corollary 2.5. There is no critical points at infinity of J in V(p,e)\ Vs(p,€),
p=>1

The aim of the next section is the characterization of the critical points at
infinity of J when the flatness order 3(y) varies in (1, n) for any y € K. According
to the corollary mentioned above, we are only interested to characterize these
critical points in Vs(p,e), p > 1.

3. Critical points at infinity

In this section we construct a decreasing pseudo-gradient of J in Vs(p,e), p >
1, for which the Palais—Smale condition is satisfied along its flow lines as long as
these flow lines do not enter in neighborhood of critical points y;, i = 1,...,p,
such that (y1,...,yp) € (Ksn—2o NKT)UCX, , UC™. Namely, we shall prove
the following main result. -

Theorem 3.1. Let 5 = max{f(y),y € K}. Under assumptions (H1), (Hz),
and (f)a, B € (1,n), there exist a bounded pseudo-gradient W in Vs(p,e), p > 1,
and a fized positive constant ¢ such that for any

u = Zazé(al, Ai) € Vd(p» )7

the following assertions hold:
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() (0. W) < —c | ()\5 N IVK a;) > >

J#i

p
< —¢ ;(A@+’VKaz > Z‘SW

J#i
(iii) All the component Ni(s), i =1,...,p, of the flow line

p

u(s) = Z i ($)0(a;(s) \i(s))

=1

remain bounded as long as u(s) is out side a small neighborhood N (p,e) of
—20

Zz 1 5(yz oo)/K(yZ) 2, where (yl, tt 7yp) € (’C>n720 OIC+) UC%On72o UCOO

However, if u(s) enter N(p,e), all concentration \;(s), i = 1,...,p tend

to oo.

Before giving the proof of Theorem 3.1, we state the following result which is
an immediate corollary of Theorem 3.1.

Corollary 3.2. Let K be a positive function satisfying (Hy), (Hz), and
(f)g, B € (1,n). If (1.2) has no solution then the only critical points at infinity
of J are

P
O (y;,00
Z W) here (Y13 Yp) € (Kon—2s NKT)UCS, 5, UC™.

n—20 )

—1 K(yi)

We recall, in [2, Theorem 3.1] and [3, Proposition 2.5], the authors studied
the subject of Theorem 3.1 and provided the description of the critical points at
infinity of J when the flatness order S(y) € (1,n — 20] for any y € K and 5(y) €
(n — 20,n) for any y € K respectively. In these two paper it is proved that

Proposition 3.3 ([2]). Assume that 5(y) € (1,n—20] for any y € K. Under
assumption (Hy), there exists a bounded pseudo-gradient Wy in V(p,e), p > 1,
satisfying (1), (ii), and (iii) of Theorem 3.1, where (Ksp—2, NKT)UCE, 5 UC>
is replaced by C=,_,, in (iii). B

Proposition 3.4 ([3]). Assume that 5(y) € (n—20,n) for anyy € K. There
exists a bounded pseudo-gradient Wy in V(p,e), p > 1, satisfying (i), (ii), and
(iii) of Theorem 3.1, where (Ksp—2e NKT)UC, o, UC™ is replaced by Ksp—2sN
KT in (iii). N

We now state the proof of Theorem 3.1.
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Proof of Theorem 3.1. Let
p
w= Zai(s(ai,&') € Vs(p,e), p=>1.
=1

For any i = 1,...,p there exists y; € K such that A\;|a; — ;| < and y; # y; for
all 1 <7 # j < p. According to two above-mentioned results, we only consider
here the situation where u is expressed as follows

q p
u = Zaﬁ(ai,xi) + Z Qid(g; 0) = w1 tug, 1<¢g<p,
i=1 i=q+1

where (y;) € (1,n —20] for all i = 1,...,q and 5(y;) € (n — 20,n), for all i =
qg+1,....p.

The construction of the required pseudo-gradient W (u) will depend on the fol-
lowing three statements. In each statement, we construct an appropriate pseudo-
gradient V; satisfying the requirements of Theorem 3.1 and the global pseudo-
gradient W in Vs(p,e) will be a convex combination of V;, i = 1,2, 3.

In the next reasoning we denote f3; instead of 5(y;) for each i.

Statement 1:

— B
up = Z aié(ai,)\i) and ug = apé(awp) with 8; + 8, — 2 :
i=1

p
n— 20

>0,1<i<p-1.

For any ¢ = 1,...,p — 1, we claim the following

1 1
gp=0|—|4+0| — if ¢ is small. 3.1
=) (55) o

Indeed, let v be a small positive constant. We have

1 .
EipNﬁ, Z:1,...,p—1.
(Aidp) 2

n—=2o __n—20 n—=2o
IfA 2 > %)\gp 2, then g < 7}\%{1 =0 </\ép> if v is small. If A\, 2 <
4 P

__ n—20
%/\pp >, then B3, will be strictly larger than % since \; > ¢! and ¢ is

arbitrary small. Thus,

n?Za 5 1
2Bp—(n—20
Aj S ——N
72ﬁp7(n72a)
Therefore,
1 1 1
n—20 — n—20 n—20 n—2o0 :
2 28p—(n—20) 2 2Bp—(n—20)
Ap ¥ Ai
Consequently,
< 1 1
Eip — n—2o n—2o n—2o :
: 2 (14 35,2 n 257

v 2Bp—(n—20) )\Z 2
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Using the fact that 8; + 8, — 2 nﬁ i@’; > 0, we derive that

n— 20 n— 20

2 (1+2Bp—(n—20)

) > Bi

and therefore €;, = o </\ > for € small. Claim (3.1) is then valid.

The construction of the required pseudo-gradient V; in this statement depends
to the two following three cases.

Case 1.1: (y1,...,yp—1) € CZ, o, and yp € (Ksp—2, NKT). In this case, we
set Vit (u) = Wi(u1) +Wa(ug) where Wi and Wo are the pseudo-gradients defined
in Propositions 3.3 and 3.4 respectively. From the estimate (i) of Proposition 3.3
we have

p—1 ) p—1
(0. (), Wi(un) < —c [ 3 ( o+ ij”‘) YT S YeTeny
i=1 i g i=1

1<ij<p—1

In addition, from the estimate (i) of Proposition 3.4, we have

p—1
(0J(u), Wa(ug)) < —c (A,lé’p + W) + Z O (i) -
P p i=1

Using claim (3.1), we obtain

(0 (u), VM () < —c Z (}\Bl n \VK a;) ) ZEZ]
i=1 \ i

J#i

The properties of W1 and Wy in Propositions 3.3 and 3.4 show that a concen-
tration phenomenon happens in this case in the sense that all components \;(s),
i=1,...,p, tend to +00 as s tends to +oo along the flow lines of Vll.

Case 1.2: y, & (Ksp—20 NKT). We use Wa(ug2) which is the pseudo-gradient
defined in Proposition 3.4. In this case Wa(us) satisfies the Palais-Smale con-
dition on its flow lines in the sense that \,(s) remains bounded along ua(s) =
p(8)d(a,(s),p(s))- Moreover, by estimate (i) of Proposition 3.4 we have

<8J(U),W2(U2)> < —c¢ ()\Bp _|_+|VK CLP ) ZO 5zp

Using claim (3.1), we obtain

(0J(u), Wa(ug)) < —c ()\gp ++|VK ) ) Zo ( ) .

Let )
:{i\lgigpand)\?i22/\5p}.
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From the above inequality, we get

1 VK
(8J(u), Wa(ug)) < —c (Z =+ +|A(“p)|) +> o
iel Ni p il
Observe that under (f)s-condition, we have
VK (a;)| ~ |a; — yi\ﬁi_l, i=1,...,p.
Using the fact that \;la; — yi| < 6, we get
K (a; .
w < ;‘; i=1,....p.
We then have
VK/(a;
(0J (u), Wa(us2)) —cZ( ‘ )\<‘a)|)+20
el ’i t i1
For any i =1,...,p, we set

Using the estimate (iii) of Proposition A; of [2], we have

(

X

2

n—20 a? O
(0.0 (u), Zi(w)) = 2. (u) sty ZELE) 5 i 08
CLz) Ail i
p
+zo(km)+z
J#i
where
2n ‘mllﬂz
;= n—20o d
“T /R 1+ e
. ,f’;g/ dz
C=2C Py
0 R (1 + |z]2) P

Using the fact that

we obtain from (3.2).

<8J uw), = Zi

el

u)> < —c

66@' <

i
O\;

1<i#j<p,

()

—C¢&yj,

Z €U+ZO

i€l,j#i el

Do

il

§

\Bi
Z

) (3.3)
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Therefore, for m > 0 being small enough, we get

<8J( W2 UQ mZZ > Z (}\1& _|_|VI§\(GZ)’> +Zgz’j

iel icl i

Let J1 ={1,...,pf\ T and let 4y =}, ; @id(q; ;). For any i € J1, B; <n—20.
Thus, by using the pseudo-gradient W7 of Proposition 3.3, we have

(8T (u), Wy (01)) < —c Z(A@HVK a;) >+ S o]t Y 06

i€J1 i£jeS1 ieJy,jel

Let m’ > 0 be small enough and let

Vf(u) = Wa(ug) —m Z Zi(u) +m'Wq(ay).

These above two inequalities yield

(8T (u), VE(u)) < —c Z (}\Bi n \VK a;) ) ng

i=1 i i#j

By construction, V{2 satisfies the Palais—Smale condition on its flow lines, since
under the action Wi (u,), all the concentration \;,i € J; satisfies )\f i< %)\gp and
Ap does not move.

Case 1.3: (y1,...,yp—1) € C=,_o,. In this case W;(u;) defined in Proposition
3.3 satisfies the Palais-Smale condition on its flow lines in the sense that the
maxi<j<p—1 Ai($) remains bounded along u;(s) = Zf;ll @i (8)0(a;(s)Mi(s))- More-
over, it satisfies

1 p—1
e Dol e e KD DI ED WL %
Ai i=1

1<izj<p-1

p—1
1 VK (a;)| 1
<—c BRI i | +o . (34

1<izj<p—1

If )\gp 1)\5 ', we set V2 (u) = Wi(up). From the above inequality and claim
(3.1), we have

(0T (), VP (u)) < —c Z ()\ﬁi 4 ‘VK a;) )+25U

i=1 i i#j
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If NP < 1)\61, we set Z(u) = (— > p_q be(yp))Zp(u). Observe that Z(u) satis-
fies the Palais—Smale condition, since A1 does not move under the action of Z.
Moreover, by the expansion (3.2), we have

(0 (w), Z(w) < =5 +ZOszp /3*2 ( ) (3.5)
)\P =1 Ap i=1

In this situation, we set V3(u) = Z(u) + Wi(u1). From (3.4) (3.5), we have

(0J(uw), VP (u)) < —c Z ()\ﬂz + |VK a;) ) +Z€w
i=1 \ i

i#£]

This conclude the construction of the required pseudo-gradient V; in this first
statement. It is defined by a convex combination of Vi!, Vi and V3.

Statement 2:

up = Zaié(ai)\i and ug = apd(q, ) With 5; + 5, — 2 ﬂZﬂp >0,1<:<p-1
; 20

. . Bioﬁp _

and there exists at least ig € {1,...,p — 1} such that g;, + 8, — 272 =0.
n—2c

Setting

A, = 1<i< 5 il p

p =147 i p—landﬂ,—i—ﬂp—Q fO )
; for all © € A,. We introduce the following

Lemma.

Lemma 3.5. Under assumption (Hz), there exists a bounded pseudo-gradient
Yi(u) satisfying

(07 (w), Vi) < —¢ 3 ( +6zp> +) 0 ()\51>

i€A) €Ay

Moreover, maxi<i<p Ai(s) remains bounded along the associated flow-lines

Proof. For any 1 <1 # j < p, we have

n—2o

j= ’ T o) =272 Cw) ()
i ((1—cosd(ai,aj)))\i)\j> (L+0o(1)) =2 ()\i/\j)n—Tzo(l“‘ (1))

Thus,
Oeij n—20_n-2 G(yi,y;)
N—2 = — 22 —L (14 0(1)).
O\; 2 ()\Z-)\j)n;(r ( ( ))
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Estimate (3.2) is then reduced to

(0J(u), Zi(u)) = (n — 20)J( Er ;02 ;2%
; (i) 2"

P
o Cifi D1 br(yi) .
—f—ainK(yl) NG E XB] +o0 g €|, 1=1,...

j=1 j#i

4

Using the fact that o' > J(u)"=2= 25 K(a;) = 1+ o(1), we get

- L WA+
(K(@)K(ay)

af: ! ol 2 (1+0(1
oEE T 1+ o)

Therefore,

_n [ gn=2e G (yi,y;)
(&](u),Zi(u»:(11—2(7)J(u)1 2 272 ¢ L.
; (K (yi) K (y5)) =

Bic; > he1 bk (yi)
" nK(y) 2T A " ZO tol| ey

J#i

Let 9 be a fixed positive constant small enough and let

n—QJ
2 ¢ G
L, =1i€A,| : (i, )

n— 20

(K(yi)K(yj)) )"

< (=) Bici | > 1 Ok (%)

—20 n—2o

n—20 .
nkK ()" A

The proof of Lemma 3.5 depends on the following two cases.

Case 1: Iy, # (. In this case, we move each \;, i € I,,, according to the

following differential equation
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Observe that X;,i € I, satisfies the Palais-Smale condition along its flow lines,
._n—2o0 n—2c
since for any i € I,, we have )\fz 2 < MX,? , where M is a fixed positive

constant and ), does not move under the action of X;. Using estimate (3.6), we
have

Bici (> ke be(vi)?
yl)l“!‘% )\ﬁl

_2%52 (X1 bk (y )) yz,f/g% +Zo< )—i—o Z%

U (u)) = (n— 20 ulfg —
(0J (u), Xi(u)) = (n — 20)J (u) (M{(

In our statement, we have

Bif3
.

>0, i=1,...,p—1.

This implies that 8; <n — 20 foralli=1,...,p — 1 and therefore

1 1
Eij:0<>\ﬁi> +0</\6j>’ ase—0, 4,j=1,...,p—1, i #j. (3.7)
i J

Thus for any ¢ € I,,, the following assertion holds

DX — (9T =2 [ Bie (T bel)?
(0 (u), Xi(u)) = (n — 20)J (u) ( K () P

n n p
B 2n—22créz |Zk:1 bk(yl)| G yhgp2g> + ZO < >

KWK (1) "5 (i) =1

If (3 5y bk(yi)) <O, then from the above inequality, we obtain
(0 (u), Xi(w)) < —c | 5 +ep |+ o ﬂ Y0 5 (3.8)
A =\ )\ e\

If (33— bk(yi)) > 0, using the fact that ¢ € I, we obtain

(u 90 J(u) -2 | - Bici (Xt i ()
(0J (u), Xi(u)) < (n — 20)J (u) K () ¥

Bici Z (ke br(91)?

n—2o A
nK (y) "7 AP

+ 0 (A@) /\@J“Z <Aﬁj> (3.9)

JF#i JFi

- (1 =)
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Then (3.8) and (3.9) imply that

<8J(u),ZXi(u)> — ) 6+Z ( ) (3.10)

1€1y, 1€1y, z J€ 1y,

For the indices i € Ay \ I,,, we have

n—2o

277 ¢ G(yi, y5) Bici > k=1 bk(yi)
n— 20 Z (1 - 70) 1+n72o /BL .
(K (i) K () "5 (Aady) "2 nK(y;) "2 A
This implies that
. n—2cg n—2o
ANTET s 2, i€ A\ L,

where m is a fixed positive constant. Now let ig € I,,. We have

n—2o 1 Bi _n—20

>\p 2 > M)‘ioo 2
It follows that
A > m')\io, 1€ Ap \ I’YO? (311)

since f3; = B;, for all i € Ap,. Here m/ is a fixed positive constant. Using (3.10)
and (3.11), we obtain

<6J(u), Z Xz(u)> —c Z Bz Z 0 <1> . (3.12)

N
i€Ly, i€A, ¢ Ay j

Moreover, as in estimate (3.3), we have

< Y Zi > ey wzo(w) S ( ) (313

€A 1€Ap,JFL i€EA 1Z€Ap
Let in this case
= Z Xi(u) —m Z Zi(u)
i€y, €A,

where m is a small positive constant. From (3.12) and (3.13), we have

<% (T )+ o)

i€A) j#i JEAp

< —CZ;AP < +51p> +]§ (/@)

This conclude the proof of Lemma 3.5 in this case.
Case 2: I, = 0. It follows that for any i € A,, we have

Bici | > ket bi,(yi)|
n—20 )\Bl

(0J(u), Y1(u))

IN

272 ¢ G(vi, yp) -1
(K () K ()5 (Nhp) ™2 - 70)7’LK(yz')1Jr




20 Azeb Alghanemi, Wael Abdelhedi, and Hichem Chtioui

Let

n—20 _

Bie | S ba() 2"
A (KK () "
d G(yivyp) )

nk (i)'

iCi br(y;

and ——— " < (1 + 27o) Pic __ 1> e lgk(y |
Qi) 2 nK (y;)' " A

I={ied,|(1-2y)

For any ¢ € I, we have

28p K
1— 2/‘)/0 n—=2c p < —
(120 T < <

i

where

Bics (K (y) K () T | 7y be(s)]

n—20 _ n—20 )
n2 2 ¢K(y)'t 2 G(Yi, Yp)

K=

since (f; — ”722‘7)712_—’82’70 = f;. Moreover, we have

—1 —1
—28p K. 1 —28p K
(14 2g)n-20 g; < 5 < (1—2y)"2 ;; : (3.14)

Using estimate (3.6), we have

> k=1 b (Yp)

Ay

—n Bpcp
(0 (u), Zp(u)) = (n —20)J (u)' "> <nK(yp)”"f”

+ 2n7220 E G(ym yp) — 1 —

i#p (K(yi) K (yp) T (Nidp) 2

+> o ()\61> dep|. (315
j=1

J#p
Observe that for any ¢ # p ad i € A, we have

&ﬁ
Bit By — —5~>0.
Therefore, by claim 3.1, we get €;, = ( ) ( p), as ¢ is small. (3.15) is
then reduced to
By > i1 bie(Yp)
(07(w), Zyw) = (n — 20)7 ( S
p
n—2c s 1
+92 = 52 G (y; yp) __ —
= (K (yi)K(yp)) © (Nidp) 2
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+Z ( >+0 > en

JEAp

ZZ=1 br(Yp)

_n ,3 C
= (= 20) 70 <nK( pli”‘%

Yp) )‘gp

n20 G(y; 1
+2%57e Y 7 = n_20>
2

el (K@) K(yp)) + (Nidp)

P
+ Z O (gjp) +Zo <6> ol e (3.16)
JEAP\I v JEAp
Using the fact that
n—=2o
o b a2 o
(1 . 270) Z /Bzf:_n_% ’Zk 15 k(yz)| Z 2 c e 20 ’
ie1 K (yi) 2 A iel ( (yi) K (y ))
G(v: Ci b
(y“gfg)a < (1 4 270) Z ﬁzCz — ‘Zk 15 k(yz)|’
(Nidp) 2 1 nK(y)'t T Ai
we get from (3.14) that
"*22052 1 G(Yi, Yp) <L,
n—20o n—=2o0 )
1 (K (i) K(yp)) 7 (Nidp) 2
where,
L = 1—2v Bic; DI
- 283 n—2o0
(1 —+ 2')/0)# el nK(yi)H_ 2 Kip)\gp
Io— 1+ 2v Bici | > k1 (i)
2 — ﬂ K ) 1+n72o' K )\IBP N
(1 —2y0)7—20 se1 (i) " 2 ipAp
Thus, from (3.16), we obtain the following two inequalities
L1 < (0J(u), Zp(u)) < Lo, (3.17)

where,

i _n B D1 be(yp) 11— 2%
Ly = (n—20)J(u)'"2 =22 S0 o
K(yp) ™ 2 (1429)n20

Bic; | > ko1 be(wi)| 1 . 1
R E Ky O\ 2wt relE )
'4 J

i1 K (y; ieAp\L

= _n By 2ok bk(y) 1427
Ly = (n—20)J(u)"2 Zp e 5
K (yp)" % (1 = 2yg) 7
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Bici |0 by 1 | -
X +n7220, Kip Tgp—i'o Z Ezp Z: )\ﬁ]

1
el TLK yl

i€A\T j=
Let N
g Bici | 2 k=1 br(%i)]
K 1+n—20 K °
ic1 nK(ys) 2 P
) 1+2
For ~ small enough, the sign of Bocs Zk:llfg 70251) S is the sign
f "OE) TR (1 F 290) 7
0
Bpcp Zzzllbkglizz 48,
noK(y,)

which is non zero by assumption (Hz). Setting

chp 22:1 bk(yp)
n—2o
n K(yp)1+ 2

X (u) = — sign ( S)Zp(u).

Observe that by (3.14), we have )\g” < M)\fi for any i € I where M is a fixed
positive constant which depends only on K. Since A; does not move under the
action of X, the Palais—Smale condition then satisfied along the flow lines of X.
Moreover, by (3.17), we get

p—1
(8] (u), X (u)) < — Bp + > Olep) +o<; ;3>

Ap i€ALNT

From (3.14), we have

(0J (u) _CZ /31—1— Z O(eip) + 0 Z)\lﬁl

’LGI 1€Ap\I il

Observe that for any i € I, we have g, ~ ﬁ. We therefore have

0J(u), X () < -3 (;ﬂﬁei},) + Y Oeq) +o Z;m (3.18)

iel \"i ieAp\I igl M
We now take care for the indices i € A, \ I For any i € A, \ I, we have

n—2o

2 ¢ Glyinyp) o (1+2%)Bici |35, bi(wi)|
(KK () 5 (AAp) "7 nK(y) 2" A

We decrease all \;,i € Ay \ I according to the differential equation A= =\
The related pseudo-gradient is

(3.19)
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Using estimate (3.6), we have

Bici > ket bk(yi)
n—20 i
i€ Ap\I nkK (y;)'* /\f

Z Z G (i, y;) — 1n_2g

icant iz (i) K(y;)) =

p
+Z<;ﬂ> tol 3 ey
7j=1 7

€A\, 5#1

(0 (u), X' (u) = —(n — 20)J (u)' "3

Slnceew—o(}\ )—i—o(}\T) for alli € A, \ I,j # i and j # p, we get
J

Bici > ket Ok(yi)
i€Ap\I ”K(yz')Hn_?% /\z'ﬁi

+27% Y Clng) 1 —|—Zo< ;) .
i€Ap\I (K (yi)K(yp) ) 7 (Airp) 2 =\

Using inequality (3.19), we obtain

(0 (u), X' (u)) = —(n — 20)J (u)'~3

P
1
(@J(u), X'(w)) < —c > ep+o ZW
1€AP\I j=17
Again by (3.19), we have
@Iw), X'w) < - 3 (et — | +o L (3.20)
i€ Ap\I i 1€ Ap\I 7Yj

Now for m > 0 being small enough, let
Yi(u) = X'(u) + mX (u).
From (3.18) and (3.20), we get

(8 (u), Y1 (u)) < —c Z (

The proof of Lemma 3.5 is thereby completed. 0

1 1
j+€ip> +o Z F
J

JEAp

In order to complete the construction of the required pseudo-gradient V5 in
this statement 2, we denote the index of A, such that \;, = mliqn Ai by i1. Set
1€ Ap

—_

Ilz{i\lgigpand/\fiz2)\5?1}.
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Since §; = f;, for all ©« € Ay, A, is then included in I; and thus,

OJ(w), Vi) < —c [ )\61 Y e | 4o ;3 . (3.21)

icly ’LEA i€11
We now introduce the following lemma.

Lemma 3.6. There exists a bounded pseudo-gradient Ya(u) satisfying

(07 (), Ya(u)) < —c Z(Aww = >+ > e+ > Ol

i#jelf ielf,jel

Moreover, maxi<i<p A\i(s) remains bounded along the associated flow-line

p
u(s) = i(8)(a,(5)0i(5))-
=1

Proof. Setting & =), I @;0(q;,%;)- Consider the following three cases for .
Case 1: If = {p}. Let in this case Ya(u) = Wa(4) where W5 is the pseudo-
gradient of Proposition 3.4. It satisfies

<8J(u),Y2(u)> < —c¢ <)\ﬁp + |VK CL@ > ZO 51p

Case 2: p ¢ I{. In this case, let Ya(u) = Wi(u) where Wj is the pseudo-
gradient defined in Proposition 3.3. It satisfies

(0J(u),Yo(u)) < —c Z <)\B¢ + ‘VK a;) >+ Z e |+ Z O(ei)).

i#jels iel¢ jel

Case 3: p € I and fIf > 2. In this case, @ satisfies the condition of statement
1. Namely, for any i € I{ and 7 # p, we have 3; + 3, — iﬁjggp > 0. We apply then

Y(u) = Vi(u) where V; is the pseudo-gradient defined in statement 1. It satisfies

(0.). Yow) < —c Z(WW = )+ > o)+ Y 0.

i#jelf ielf,jel

Observe that in all three cases above, Y2(u) acts on the indices i € I¢. Therefore,
it satisfies the Palais—Smale condition on its flow-lines, since for any i € I, we

have )\f ¢ < %)\Zn and \;, does not move. This finishes the proof of Lemma 3.6. [

From (3.7) it follows that
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1 1
Eip = 0 +ol—], igA,. 3.23
’ (Aﬂ ) (Affp) ’ o2
Therefore,

(0J(u),Ya(u)) < —c Z <)\@i |VK a;) >+ Z -

ely i#jelf
—i—Zo( 61) + ) Oeip). (3.24)
i€ly 1€Ap

Let m > 0 be small enough. From (3.21) and (3.24), we obtain

(0J (u), Y1(u) + mYa(u)) < —c Z(AgijLIVKaZ) AP

=1 €Ay

and from (3.22) and (3.23), we get

(DJ (1), Y1 (u) + mYa(u)) < —c Z(}\ﬁl + |VK @) >+st
=1 7

i#]

In this statement, we set Vo = Y1 +mYa. No concentration phenomenon happens
along the flow lines of V5.

Statement 3:
o
=D id(a, ) and up = apd(a, x,)

and there exists at least ig € {1,...,p — 1} such that 8;, + 5, — 2 BZOBP

us 1s a sum of at least two bubbles.
It is easy to check that for any y;,y; € Ksn_2s, ¢ # j, we have §; + 3; —

ﬁﬂ < 0. Therefore, for u = u; + us, there exist 1 < jy # jo < p such that

252’0 Bjo
n— 20

<0, or

Qﬁz

We order all )\? ‘o i=1,...,p. Without loss of generality, we assume that

ip

For M > 0 being a large enough, we define

1={il1<i<pand ' < MA}"
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Three cases may occurs.
Case 1: 41 = 1. In this statement, we have

1
1,
AP )i

71

if M is large, i # i1.

Using expansion (3.2) and the fact that

we obtain

<6J(u),— ZZi(u)> <—cY e+ O <

)

i1 i#] i
< —cZgw +o XB—” . (3.26)
i#j

We now move J\;, according to the differential equation
N = (=D (i)
k=1

The corresponding vector field is

3

Xi, (u) = (_ bk(yil))Zil (u)7
k=1

where X;, satisfies the Palais—Smale condition along its flow lines, and by (3.2),
we have
(8T (u), X;, (u)) < 611 + Y O(ery). (3.27)
11 J#i
In this case, let
Vi (w) = mXi, (u) + ) Zi(u)
1#i1
where m > 0 and small. From the inequalities (3.26) and (3.27), we deduce that

p
It ) < ¢ | X Aﬁl +3 ey
i#j
& |VK ai)l
S —C Z B + + 281]
=1 Ail j#i

Case 2: 41 > 2 and 3; + 3; — % >0 for all ¢ ## 57 € I. We introduce the
following Lemma.
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Lemma 3.7. There exists a bounded pseudo-gradient Ys(u) satisfying

(0T (w), Ya(u)) < —c Z<)\BZ+WK a;) )+ S el vo 3 -

j#iel 1€l j¢1

Moreover, maxi<i<p Ai(s) remains bounded along the associated flow line

p
u(s) = i(8)(a,(5)0i(5))-
=1

Proof. Let @ = ) ;.; ;6;. Then, 4 has to satisfy one of the following situa-
tions.

Situation 1: 5; <mn — 20 for all [i € I. Let in this case, Y3(u) = Wi (4) where
W1 is the pseudo-gradient of Proposition 3.3. It satisfies

+|VK @) ) Z gij | +0O Z €ij

jFiel i€l j&l

(0.0(u). Ys(w) < — [ 3 (-

i€l

A

Situation 2: There exists only one index ¢ € I such that 8; > n — 20. In this
case, u satisfies either the condition of statement 1 or the condition of statement 2.
Let Y3(u) = V;(a) where V; is the pseudo-gradient defined in the above statement,
i = 1,2. Therefore, it satisfies

VK a;
(8J(u), Ya(u)) < —c Z (w +\A()|> + > e | +0| DD

j#iel el jé¢l

Observe that in the above two situations Y3(u) satisfies the Palais—Smale condi-
tion on its flow-lines u(s), since it acts only on the indices i € I and by (3.25),
there exists at least an index jo € {1,...,p} such that jo ¢ I. Notice that

g o L8 :
A SM/\j]’ 1el, j&1.
This conclude the proof of Lemma 3.7. ]
We now decrease all \;,i € I. Using (3.2), we have

<6J(u),—zZ¢(u)> <-c ) 5“+ZO< % >

€1 1€1,57#1 €1
< 1
s —C Z 87;]' “+ o0 )\,3721
i1, j7#1 i1

Let in this case
Vi (u) = mYs(u) — Y Zi(u
il
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where m > 0 and small. Using Lemma 3.7 and the above inequality, we have

< (0J(u), V- —cz/\ﬁ +Z€Zj_— Z 514—25”

el J#t A; J#

p
< —¢ §<A@1+’VK a;) )JFZ&J

JF#i
Case 3: 4I > 2 and there exist ig # jo € I such that
2Bi,5;
ﬁm + 5]0 - ﬁ) - <0.
In this case, we claim that
1
5 = 0(€ipj,) ase — 0. (3.28)
Nio 0
Indeed,
n—2o
n—20
1 571 N ()‘io/\jo) 2 /\j02
Big ~t0jo Bi T Big -2
)\ioo /\io0 )\ioo 2
o
Since 49, jo € I, we get ﬁ < )\g—oio < M. Therefore,
10
gi() n—2o
g 2
1 —1 AioJO 1
ﬁioginOSMWSM o 251 B —0ase—0.
>‘i0 )\iolo 2 " 2By, (BioJﬁBjo* nEQO'O)

0

Hence claim (3.28) is valid. We now decrease all the A\;, i = 1,...,p. Let

By (3.2), we have

(8J(u), Vs _—chz]—I—ZO (Aﬁz)

J#i =1

Observe that for M large we have

i

Lo : :
=0 ()\@il) for all ¢ ¢ I and for ¢ being
i1

small enough, /\% ~ 51’0 = 0(€jyj,) for all i € I. Therefore,
i 1 >\ K2
%0

010, Viw) < 3" | S5+ 2 e
=1

i J#i
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p
1 VK (a)|
<o 32 (G ) o3

i=1 ! j#i

This finishes the construction of the required pseudo-gradient V3 in this state-
ment. It is defined by a convex combination of V3!, Vi, and V3.

The global vector field W in Vs(p,e) will be a convex combination of Vi, V5,
and V3. It satisfies conditions (i) and (iii) of Theorem 3.1. Concerning (ii) it
follows from (i) and the estimate of ||| given in Proposition 2.2. The proof of
Theorem 3.1 is thereby completed. O

Remark 3.8. Let p > 1. On V(p, ¢), we define a global pseudogradient W asa
convex combination of Wy and W where Wy and W are the vector fields defined
in Proposition 2.4 and Theorem 3.1 respectively. Of course the flow lines of W
do not preserve X1 for any time. In order to obtain solutions of (1.2) in XT, we
reduce our study to a small neighborhood of ¥ as is done in [8]. For 79 a fixed
positive constant small enough, we set

I = {u eS| T@F lu <m},

where 4~ = max(—u,0). Let V be the vector field on V;, (X7) defined by

V(u) = W(u) ifueV(pe), p>1,

V(u) = —8.J(u) if u €V, (ST)\ V (p, %) . op> 1.

Observe that for small e, V(p,e) C V%o (X1). Therefore, V' coincide with —d.J
on Vp, (1) \ Vi (X71). Reasoning by analogy with [8, Lemma 4.1], we can see

that any flow line generated by —d.J with initial condition in V;,, () remains in
Vi (27). Thus V;,(X7) in invariant under the flow of V.

4. Proof of Theorem 1.3

Assume that J has no critical point in V;, (7). Under the assumptions (Hj),
(H2), and (f)g, B € (1,n), the critical points at infinity of J are (y1,...,yp)oc =

Ogioo)s P > 1, and (y1,...,9p) € (Ksn—20 NKT)UCE, 5, UC™. To compute
the index of J at (y1,...,Yp)oc, We proceed as in [8, Lemma 4.2]. For any u =
P @i0(q; ;) D€AT (Y1,---,Yp)oo the following generalized Morse Lemma holds.
We have

(St o) 5 (S )
J iéai,¢+7 =5 N =3
i:1a (ai,\i) T Y Pt K(yl)TQ
p n |

x (1 - ]H|2+Z( bk(?ﬁ))\(ai*yi)ﬂﬂi +e) )\6¢> ’
f i

=1 k= i=1

where H € RP~! is the coordinate related to the expansion of J with respect to
the «;’s variables and S and ¢ are two positive constants.
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Using the fact that bg(y;) # 0 for all & = 1,...,n, the index of J at
(Y15 -+, Yp)oo is then given by

i1, Uploo =P — 14> _(n—ily),
i=1

where

z(yz) = ﬁ{bk(yl) | 1<k <nand bk(yl) < 0}.

We apply now the deformation Lemma of [7]. Since J has no critical point in
V770 (ZJr)v

VWO (Z+) = U Wq?o(yb <. 7yp)007 (41)
(Y1099 E (K m—20NKH)UCE, _, UC®
where W°(y1,. .., Yp)s denote the unstable manifold of (—0J) at (y1,...,Yp)co
and ~ denotes retract by deformation.
By applying the Euler—Poincaré characteristic on the both side of (4.1) af-
ter recalling that V,,(X1) is a contractible space and dim W2°(y1,...,¥p)oc =

i(yb SRR yp)OO7 we get

1= Z (—1)iwtp)os
(Y15Yp) E(Ksn—20NKTHHUCS, , LUC®
This contradicts the assumption of Theorem 1.3. Therefore, J admits a critical
point ug in V;,)(£7). Using the same argument of ( [8], pages 659-660), we obtain
that ug~ = 0 and therefore ug € Z+. This completes the proof of our result.
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IToBHe mocirig»KeHHS BiACYyTHOCTI KOMIIAKTHOCTI Ta
TeopeM icHyBaHH#A JApoboBoro piBHsinHsi HipenbGepra 3a
yMoBHu mioiuHHOCTI. YactuHa 11

Azeb Alghanemi, Wael Abdelhedi, and Hichem Chtioui

s crarTs € UPOJOBXKEHHSIM JIOCIIIZKEeHb CTATTi 2], 1e BuBYasIach 3a-
Jlada o-KPUBUHU HA CTAHAAPTHIN cdepi 38 YMOBH, IO MOPAIOK CILIOIIEHHS
JaHol DYHKIHT y KpUTHIHUX TOUKax Hamexutb (1,n — 20]. Hasemerno mos-
HUI OMHUC BiJICYTHOCTI KOMIIAKTHOCTI 3a/1ati1, KOJIM TOPSJIOK CILJIONEHHS 3Mi-
uroeTnesd B (1,m), 1 J0BeIeHO TeopeMy iCHYBaHHs Ha OCHOBI (OpMyJIH TUILY
Eitnepa—Xonda. Sk HacaiI0K, MU y3arajbHIOEMO pe3yJibraTu pobit [2,17,18]
Ta OAEPKYEMO HOBUU.

KirouoBi cioBa: KOH(MpOPMHaA reoMeTpisi, 9aCTKOBa KPUBUHA, Bapialliiine
obunceHHst, KpUTUYIHI TOYKY Ha HECKIHIEHHOCTI
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