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The aim of this paper is to study the existence of a solution to the
complex Hessian equation associated to an m-positive closed current T . We
give a sufficient condition on T and the measure µ so that the equation
T ∧ βn−m ∧ (ddc.)m−p = µ has a solution on the set of m-subharmonic
functions. For this we establish a connection between the convergence in
capm,T of a sequence of m-subharmonic functions and the weak convergence
of the associated Hessian measure.
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1. Introduction

The Dirichlet problem for the complex Monge–Ampere operator was studied
by Bedford and Taylor [1] who proved first that the operator (ddc.)n is well defined
on the set of locally bounded plurisubharmonic functions in a bounded domain
Ω of Cn and then solved the Monge–Ampere equation (ddc.)n = 0. This problem
achieved a considerable progress when several researchers studied the case of non-
degenerated Monge–Ampere equation and the regularity of its solution. Recently
B locki [2] introduced the notion of m-subharmonic function denoted by SHm(Ω)
for 1 ≤ m ≤ n and developed the pluripotential theory for the complex Hessian
operator. This allows [2, 8, 10,13] to study the Dirichlet problem for the Hessian
equation using pluripotential techniques adapted to the complex Hessian equation
to settle the question of the existence of its weak solutions. In 2013, Dhouib
and Elkhadhra [7] introduced analogous Cegrell classes for studying the complex
Hessian operator with respect to an m-positive closed current T . The purpose
of our paper is to study the existence of a solution to the Hessian equation with
respect to T which is given as follows:

T ∧ βn−m ∧ (ddc.)m−p = µ, (1.1)

where β := ddc|z|2.
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Using the notion of m-capacity capm,T introduced by [7] and under some
conditions on the given current and measure µ, we prove the existence of a solution
for equation (1.1). This result is given by the following main result.

Theorem 1.1. Assume that all ‖T ∧βn−m‖−negligible sets are negligible for
the Lebesgue measure and that:

1) There exists v ∈ SHm(Ω) ∩ L∞(Ω) such that T ∧ βn−m ∧ (ddcv)m−p ≥ µ.

2) There exists a sequence of measures µj := T ∧ βn−m ∧ (ddcuj)
m−p such that

‖µj − µ‖Ω → 0, where uj ∈ SHm(Ω) ∩ C(Ω), uj = u1 on ∂Ω for all j ∈ N.

3) For all j ∈ N, one has capm,T (sup{uk | k ≥ j} < sup?{uk | k ≥ j}) = 0.

Then there exists u ∈ SHm(Ω) ∩ L∞(Ω) such that T ∧ βn−m ∧ (ddcu)m−p = µ.

The main tool for proving the above theorem is to find a suitable condition
on the convergence of a sequence uj to u to ensure the weak convergence of the
measures T ∧ βn−m ∧ (ddcuj)

m−p to T ∧ βn−m ∧ (ddcu)m−p. In the case T = 1
and m = n, Cegrell [3] and Lelong [12] observed that the L1

loc-convergence of uj
to u is not sufficient for obtaining the weak convergence of the measure (ddcuj)

n

to (ddcu)n. In 1996, Xing [14] gave a sharp sufficient condition to ensure the
convergence of (ddcuj)

n to (ddcu)n. Here we treat the problem in the case of m-
positive currents and we prove that convergence with respect to capacity capm,T is
sufficient for obtaining the required convergence and also, under some conditions,
we show that the converse is true. We study also the convergence of ddcuk ∧Tk ∧
βn−m to ddc∧uT ∧βn−m, where (Tk)k is a sequence of m-positive closed currents
that converges to T . We prove, under a suitable condition on the growth of the
mass of Tk ∧ βn−m with respect to capm,T , that such convergence holds.

2. Preliminaries

Let us recall first the notion of m-subharmonicity introduced by B locki in [2].

Definition 2.1. A real form α of bidegree (1, 1) in a domain Ω of Cn is said
to be m-positive if at every point of Ω one has

αj ∧ βn−j ≥ 0, j = 1, . . . ,m.

The above definition coincides with the standard definition of positivity in-
troduced by Lelong for the case m = n. To obtain a similar analogy, Dhouib and
Elkhadhra [7] introduced the following definition of positivity for (p, p)-forms.

Definition 2.2. Let ϕ be a real (p, p)-form defined on an open subset Ω of
Cn and let m be an integer such that p ≤ m ≤ n.

1. The form ϕ is said to be m-positive on Ω if at every point of Ω one has

ϕ ∧ βm−n ∧ α1 ∧ · · · ∧ αm−p ≥ 0

for every m-positive (1, 1)-form α1, . . . , αm−p.



120 Jawhar Hbil and Mohamed Zaway

2. The form ϕ is said to be m-strongly positive on Ω if it can be written as
follows:

ϕ =

N∑
k=1

λkα
k
1 ∧ · · · ∧ αkp,

where αk1 , . . . , α
k
p are m-positive forms on Ω and λk ≥ 0.

By duality, one can define the notion of m-positive currents as follows.

Definition 2.3. Let T be a current of bidimension (n − p, n − p) on Ω and
let m be an integer satisfying p ≤ m ≤ n.

1. The current T is called m-positive if 〈T, βn−m∧ϕ〉 ≥ 0 for every m-strongly
positive form ϕ of bidegree (m− p,m− p).

2. The current T is called m-strongly positive if 〈T, βn−m ∧ ϕ〉 ≥ 0 for every
m-positive form ϕ of bidegree (m− p,m− p).

Remark 2.4.

1. The above definitions generalize the standard definition of positivity for
forms and currents, it suffices to take the case m = n to recover them.

2. If T is an m-positive current, then the current T ∧ βn−m is positive.

3. There is no link between s-positive currents and r−positive currents for
every r 6= s.

Definition 2.5. A function u : Ω→ R∪{−∞} is called m-subharmonic if it
is subharmonic and

ddcu ∧ βn−m ∧ α1 ∧ · · · ∧ αm−1 ≥ 0

for all m-positive forms α1, . . . , αm−1. We denote by SHm(Ω) the set of all m-
subharmonic functions defined on Ω.

We cite below some well-known properties of m-subharmonicity. For more
details, one can refer to [2, 7, 13].

Proposition 2.6.

1. If u ∈ C2(Ω), then u ∈ SHm(Ω) if and only if the form ddcu is m-positive
on Ω.

2. If u ∈ SHm(Ω), then the current ddcu is m-positive.

3. If u, v ∈ SHm(Ω), then λu+ µv ∈ SHm(Ω), ∀λ, µ > 0.

4. PSH(Ω) = SHn(Ω) ( · · · ( SHm(Ω) ( · · · ( SH1(Ω) = SH(Ω).

5. If u is m-subharmonic on Ω, then the standard regularization u ∗ χε is also
m-subharmonic on Ωε := {x ∈ Ω | d(x, ∂Ω) > ε}.



A Weak Solution to the Complex Hessian Equation 121

6. If (ui)j is a decreasing sequence of m-subharmonic functions, then u :=
limuj is either m-subharmonic or identically equal to −∞.

The m-capacity of a subset E in Ω with respect to a given current T is defined
as follows.

Definition 2.7. For every compact K of Ω, the m-capacity of K relatively
to an m-positive current T denoted by capm,T (K) is defined by

capm,T (K,Ω) = capm,T (K)

:= sup

{∫
K

(ddcv)m−p ∧ T ∧ βn−m | v ∈ SHm(Ω), 0 ≤ v ≤ 1

}
,

and for every E ⊂ Ω, capm,T (E,Ω) = sup{capm,T (K) | K is a compact of Ω}.

Basing on the definitions cited below, Dhouib and Elkhadhra [7] defined the
Hessian operator with respect to a given m-positive closed current of bidegree
(p, p) to generalize the well-known works of Bedford and Taylor [1], B locki [2],
Abdullaev and Sadullaev [13] and Lu [11]. They proved that the Hessian oper-
ator (ddc.)p ∧ T ∧ βn−m is well defined on the set of bounded m-subharmonic
functions (eventually, also for m-subharmonic functions which are bounded near
∂Ω ∩ SuppT ) and studied its pluripotential properties. An essential tool used
in their work is the convergence with respect to the capacity capm,T defined by
using the complex Hessian measure associated to T . In the next section, we are
intending to give a link between the weak convergence and the convergence with
respect to capm,T .

3. Weak convergence and convergence with respect to capm,T

The notion of the convergence in capacity capm,T was introduced in [7] as
follows.

Definition 3.1. Let Ω be an open subset of Cn, E ⊂ Ω and let T be an
m-positive closed current of bidimension (n− p, n− p), p ≤ m ≤ n. A sequence
of functions (uj)j defined on Ω is said to be convergent with respect to capm,T
to u on E if for all t > 0 one has

lim
j→+∞

capm,T (E ∩ {|u− uj | > t}) = 0.

We will prove first that every sequence of bounded m-subharmonic functions
(uj)j that decreases to a function u converges to u with respect to capacity
capm,T . This generalizes the result of Bedford and Taylor [1] for the limit case
m = n and T = 1 and Lu [10] for the case T = 1. To prove this, we will generalize
first a result due to Dabbek and Elkhadra [6]. This result is given by the following
lemma.
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Lemma 3.2. Let u1, u2, v1, v2, w1, . . . , wp−1 ∈ SHm(Ω) ∩ L∞(Ω) and let T
be an m-positive closed current on Ω of bidimension (n − p, n − p), p ≤ m ≤ n.
Assume that {u1 6= u2} b Ω and let 0 ≤ ψ ∈ D(Ω), ψ = 1 on {u1 6= u2}. Then,(∫

Ω
d(u1 − u2) ∧ dc(v1 − v2) ∧ χ

)2

≤
(∫

Ω
d(u1 − u2) ∧ dc(u1 − u2) ∧ χ

)
×
(∫

Ω
ψd(v1 − v2) ∧ dc(v1 − v2) ∧ χ

)
,

where χ = T ∧ βn−m ∧ ddcw1 ∧ ddcw2 ∧ · · · ∧ ddcwm−p−1.

Proof. Using Theorem 2 from [7], it suffices to prove the result for the case
when u1 − u2, v1 − v2 are smooth. It is easy to check that (u, v) 7→

∫
Ω ψdu ∧

dcv ∧ χ is a positive and symmetric bilinear form on C∞(Ω)× C∞(Ω). Using the
Cauchy–Schwartz inequality on (u1−u2, v1−v2), when ui, vi ∈ SHm(Ω)∩C∞(Ω),
we get the desired inequality.

Theorem 3.3. Let Ω be a bounded open subset of Cn and let T be an m-
positive closed current on Ω of bidimension (n− p, n− p), p ≤ m ≤ n. If uj , u ∈
SHm(Ω)∩L∞loc(Ω) such that uj = u on a fixed neighborhood of ∂Ω and uj decreases
to u, then for all δ > 0 one has

lim
j→+∞

capm,T {z ∈ Ω | uj(z) > u(z) + δ} = 0.

Proof. Without loss of generality, one can assume that δ = 1. We consider

Ωj = {z ∈ Ω | uj(z) > u(z) + 1}

and U such that {uj 6= u} ⊂ U b Ω. Let v ∈ SHm(Ω, [0, 1]), using the Stokes
formula, we obtain∫

Ωj

(ddcv)m−p ∧ T ∧ βn−m ≤
∫
U

(uj − u)(ddcv)m−p ∧ T ∧ βn−m

= −
∫
U
d(uj − u) ∧ dcv ∧ (ddcv)m−p−1 ∧ T ∧ βn−m.

Now, by Lemma 3.2, the right-hand side is dominated by

C

(∫
U
d(uj − u) ∧ dc(uj − u) ∧ (ddcv)m−p−1 ∧ T ∧ βn−m

) 1
2

,

where

C =

(∫
U
dv ∧ dcv ∧ (ddcv)m−p−1 ∧ T ∧ βn−m

) 1
2

≤M < +∞

and M is a constant independent on v using the Chern–Levine–Nirenberg in-
equality [7]. Again, by the Stokes formula, we get∫

U
d(uj − u) ∧ dc(uj − u) ∧ (ddcv)m−p−1 ∧ T ∧ βn−m
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= −
∫
U

(uj − u)ddc(uj − u) ∧ (ddcv)m−p−1 ∧ T ∧ βn−m

=

∫
U

(u− uj)(ddcuj − ddcu) ∧ (ddcv)m−p−1 ∧ T ∧ βn−m

≤
∫
U

(uj − u)ddcu ∧ (ddcv)m−p−1 ∧ T ∧ βn−m.

It follows that∫
Ωj

(ddcv)m−p ∧ T ∧ βn−m ≤ C
(∫
U

(uj − u)ddcu ∧ (ddcv)m−p−1 ∧ T ∧ βn−m
) 1

2

.

By repeating the process (m− p− 1)-times, we get the following estimate:∫
Ωj

(ddcv)m−p ∧ T ∧ βn−m ≤ C1

(∫
Ω

(uj − u)(ddcu)m−p ∧ T ∧ βn−m
) 1

2p

,

where C1 is a constant which does not depend on j and v. As v is arbitrarily
chosen, we deduce that limj→+∞ capm,T (Ωj) = 0.

The following theorem was proved in [7] and it will be useful later on.

Theorem 3.4. Let Ω be a bounded subset of Cn, u ∈ SHm(Ω) ∩ L∞loc(Ω) and
let T be an m-positive closed current on Ω of bidimension (n−p, n−p), p ≤ m ≤
n. Then, for all ε > 0, there exists an open set Oε of Ω such that capm,T (Oε,Ω) <
ε and u is continuous Ω rOε.

Now we will establish the connection between the convergence in capacity
of a sequence of m-subharmonic functions uj and the weak convergence of the
associated Hessian measure. A similar version of the first assertion in the theorem
below was proved in [7] for m-subharmonic functions that are bounded only near
the boundary of Ω, but with an additional sufficient condition (each of the Hessian
measure of uj is absolutely continuous with respect to capm,T ). Here we give
a different proof for the case of locally bounded m-subharmonic functions and
without any assumption on the Hessian measure of uj . We will also prove the
converse.

Theorem 3.5. Let Ω be an open subset of Cn and let T be an m-positive
closed current on Ω of bidimension (n − p, n − p) and (uj)j be a sequence of
locally uniformly bounded m-subharmonic functions and u ∈ SHm(Ω) ∩ L∞loc(Ω).
Then

1. If uj converges to u in capacity capm,T on every E b Ω, then the sequence of
currents (ddcuj)

m−p ∧T ∧βn−m converges weakly to (ddcu)m−p ∧T ∧βn−m.

2. Assume that there exist E b Ω such that for all j, uj = u on Ω r E and
that the sequences u(ddcuj)

m−p ∧ T ∧ βn−m, uj(ddcu)m−p ∧ T ∧ βn−m and
uj(dd

cuj)
m−p ∧T ∧βn−m converge weakly to u(ddcu)m−p ∧T ∧βn−m. Then

uj converges to u with respect to capm,T on E.
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Proof. 1. We proceed by induction on m − p. The case m − p = 1 will be
proved if we show that ujT ∧ βn−m converges to uT ∧ βn−m. Let ϕ be a smooth
form with compact support in Ω (ϕ ∈ Dm−p,m−p(Ω)) such that suppϕ ⊂ Ω1 b Ω.
Then,∣∣∣∣∫

Ω
(ujT − uT ) ∧ βn−m ∧ ϕ

∣∣∣∣ ≤ C ∫
Ω1

|uj − u|T ∧ βn−p

= C

∫
{|uj−u|≤δ}∩Ω1

|uj − u|T ∧ βn−p + C

∫
{|uj−u|>δ}∩Ω1

|uj − u|T ∧ βn−p

≤ Cδ||T ∧ βn−m||Ω1 + C||uj − u||L∞(Ω1)

∫
{|uj−u|≥δ}∩Ω1

T ∧ βn−p

≤ Cδ||T ∧ βn−m||Ω1 +M capm,T ({z ∈ Ω1; |uj(z)− u(z)| > δ}).

This proves the case m− p = 1 since δ is arbitrary, uj converges to u in capacity
capm,T and M is independent on j.

Assume by induction that the sequence (ddcuj)
s∧T ∧βn−m converges weakly

to (ddcu)s ∧ T ∧ βn−m for s < m − p. It suffices to prove that uj(dd
cuj)

s ∧ T ∧
βn−m converges weakly to u(ddcu)s ∧ T ∧ βn−m. By Theorem 3.4, for all ε > 0,
there exists an open subset Oε such that capm,T (Oε) < ε and u = ϕ + ψ, where
ϕ is continuous on Ω and ψ = 0 on Ω \Oε. Note that

uj(dd
cuj)

s ∧ T ∧ βn−m − u(ddcu)s ∧ T ∧ βn−m

= (uj − u)(ddcuj)
s ∧ T ∧ βn−m

+ ψ((ddcuj)
s ∧ T ∧ βn−m − (ddcu)s ∧ T ∧ βn−m)

+ ϕ((ddcuj)
s ∧ T ∧ βn−m − (ddcu)s ∧ T ∧ βn−m).

Denote the first, second, and third summands in the right-hand side of this equal-
ity by (1), (2), and (3), respectively. Since ϕ is continuous on Ω and using
induction’s hypothesis, we get that (3) tends weakly to 0 when j →∞.

For (1), let ϕ ∈ Dm−p−s,m−p−s(Ω) such that supp ϕ ⊂ Ω1 b Ω2 b Ω. Then,∣∣∣∣∫
Ω

(uj − u)T ∧ βn−m ∧ (ddcuj)
s ∧ ϕ

∣∣∣∣
≤ C

∫
Ω1

|uj − u|T ∧ βn−m ∧ (ddcuj)
s ∧ (ddc|z|2)m−p−s

≤ C
∫

Ω1

|uj − u|T ∧ βn−m ∧ (ddc(uj + |z|2))m−p

≤ C
∫
{|uj−u|>δ}∩Ω1

|uj − u|T ∧ βn−m ∧ ddc(uj + |z|2)m−p

+ C

∫
{|uj−u|≤δ}∩Ω1

|uj − u|T ∧ βn−m ∧ ddc(uj + |z|2)m−p

≤ C1 capm,T (z ∈ Ω1; |uj(z)− u(z)| > δ) + δM ||T ∧ βn−m||Ω2 .

Since the sequence (uj)j is uniformly bounded, M and C1 do not depend on j
and uj → u in capacity capm,T , we get that (1) tends to 0.
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The same reason for (2) gives∣∣∣∣∫
Ω1∩Oε

ψT ∧ βn−m ∧ (ddcuj)
s ∧ ϕ

∣∣∣∣ ≤ A∫
Ω1∩Oε

T ∧ βn−m ∧ (ddc(uj + |z2|))m−p

≤ B1 capm,T (Oε) ≤ εB1.

Using the same reasoning as above, one can obtain that∣∣∣∣∫
Ω1∩Oε

ψT ∧ βn−m ∧ (ddcu)s ∧ ϕ
∣∣∣∣ ≤ εB2.

2. Let Ω′ be an open subset such that E b Ω′ b Ω, ϕ ∈ SHm(Ω, [0, 1]) and
δ > 0. By the Stokes formula and Lemma 3.2, we obtain∫
{|uj−u|>δ}

T ∧ βn−m ∧ (ddcϕ)m−p

≤ 1

δ2

∫
Ω′

(uj − u)2T ∧ βn−m ∧ (ddcϕ)m−p

=
−1

δ2

∫
Ω′
T ∧ βn−m ∧ d(uj − u)2 ∧ dcϕ ∧ (ddcϕ)m−p−1

≤ C1

(∫
Ω′
T ∧ βn−m ∧ d(uj − u)2 ∧ dc(uj − u)2 ∧ (ddcϕ)m−p−1

) 1
2

≤ 2C1C2

(∫
Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dc(uj − u) ∧ (ddcϕ)m−p−1

) 1
2

,

where

C1 :=
1

δ2

∫
Ω′
T ∧ βn−m ∧ dϕ ∧ dcϕ ∧ (ddcϕ)m−p−1 < +∞

and C2 := ||uj − u||∞ <∞. As

ddc(uj − u) ∧ T ∧ βn−m ≤ ddc(uj + u) ∧ T ∧ βn−m,

then, by repeating the same operation (m− p− 1)−times, we get∫
Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dc(uj − u) ∧ (ddcϕ)m−p−1

=

∫
Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dcϕ ∧ ddc(uj − u) ∧ (ddcϕ)m−p−2

≤ B
(∫

Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dc(uj − u) ∧ ddc(uj + u) ∧ (ddcϕ)m−p−2

) 1
2

≤ · · ·

≤ B1

(∫
Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dc(uj − u) ∧ (ddc(uj + u))m−p−1

) 1
2(m−p)

≤ B2

(∫
Ω′
T ∧ βn−m ∧ d(uj − u) ∧ dc(uj − u)
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∧
m−p−1∑
k=0

(ddcuj)
m−p−k−1 ∧ (ddcu)k

) 1
2(m−p)

= B2

(∫
Ω′

(uj − u)

[
T ∧ βn−m ∧ (ddcuj − ddcu)

∧
m−p−1∑
k=0

(ddcuj)
m−p−k−1 ∧ (ddcu)k

]) 1
2(m−p)

= B2

(∫
Ω′

(uj − u)
[
T ∧ βn−m ∧ (ddcuj)

m−p

− T ∧ βn−m ∧ (ddcu)m−p
]) 1

2(m−p)

,

where B2 does not depends on j and ϕ. As uj = u on Ω′\E and the sequences
uT ∧ βn−m ∧ (ddcuj)

m−p, ujT ∧ βn−m ∧ (ddcu)m−p, ujT ∧ βn−m ∧ (ddcuj)
m−p

converge to uT ∧ βn−m ∧ (ddcu)m−p, then we get

lim
j→+∞

∫
Ω′

(uj − u)T ∧ βn−m ∧
[
(ddcuj)

m−p − (ddcu)m−p
]

= 0.

It follows that
capm,T (|uj − u| > δ,Ω) = 0.

Proposition 3.6. Let T be an m-positive closed current on Ω of bidimen-
sion (n − p, n − p), v1, . . . , vm−p ∈ SHm(Ω)

⋂
L∞(Ω); vj1, . . . , v

j
m−p ∈ SHm(Ω).

Assume that the sequence (vjk)j is locally uniformly bounded and increases almost
everywhere to vk with respect to capm,T . Then

T ∧ βn−m ∧ ddcvj1 ∧ · · · ∧ dd
cvjm−p → T ∧ βn−m ∧ ddcv1 ∧ · · · ∧ ddcvm−p

weakly in Ω.

Proof. We proceed as in [4]. Let ϕ and η ∈ D(Ω) be such that η ≥ 0 and η ≡
1 in a neighborhood of supp ϕ. Let ϕ1, ϕ2 ∈ SHm(Ω) ∩ C∞(Ω) be such that ϕ =
ϕ1 − ϕ2. We have∫

Ω
ϕT ∧ βn−m ∧ ddcvj1 ∧ · · · ∧ dd

cvjm−p

=

∫
Ω
vj1T ∧ β

n−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ ddcϕ

=

∫
Ω
vj1T ∧ β

n−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ (ddcϕ1 − ddcϕ2).

By induction, we assume that we have the following weak convergence:

lim
j→+∞

T ∧ βn−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ ddcϕ1
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= T ∧ βn−m ∧ ddcv2 ∧ ... ∧ ddcvm−p ∧ ddcϕ1. (3.1)

As (vj1) ↑ v1, for all k ≤ j, one has∫
Ω
ηvk1T ∧ βn−m ∧ ddcv

j
2 ∧ · · · ∧ dd

cvjm−p ∧ ddcϕ1

≤
∫

Ω
ηvj1T ∧ β

n−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ ddcϕ1

≤
∫

Ω
ηv1T ∧ βn−m ∧ ddcvj2 ∧ · · · ∧ dd

cvjm−p ∧ ddcϕ1.

Using (3.1) and Theorem 3.4, one can prove that

lim
j→+∞

∫
Ω
ηvk1T ∧ βn−m ∧ ddcv

j
2 ∧ · · · ∧ dd

cvjm−p ∧ ddcϕ1

=

∫
Ω
ηvk1T ∧ βn−m ∧ ddcv2 ∧ · · · . ∧ ddcvm−p ∧ ddcϕ1,

lim
j→+∞

∫
Ω
ηv1T ∧ βn−m ∧ ddcvj2 ∧ · · · ∧ dd

cvjm−p ∧ ddcϕ1

=

∫
Ω
ηv1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1.

It follows that∫
Ω
ηvk1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1

≤ lim inf
j→+∞

∫
Ω
ηvj1T ∧ β

n−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ ddcϕ1

≤ lim sup
j→+∞

∫
Ω
ηvj1T ∧ β

n−m ∧ ddcvj2 ∧ · · · ∧ dd
cvjm−p ∧ ddcϕ1

≤
∫

Ω
ηv1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1. (3.2)

To finish the proof, it suffices to prove that

lim
k→+∞

∫
Ω
ηvk1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1

=

∫
Ω
ηv1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1.

Let vε2 = v2 ∗ χε, where χε is a regularizing kernel. We can assume that vε2 = v2

on Ω\ supp η and that η = 1 in a neighborhood of {vε2 6= v2}. It is easy to check
that∫

Ω
ηvk1dd

c(v2 − vε2) ∧ ddcv3 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1

=

∫
Ω
vk1dd

c(v2 − vε2) ∧ ddcv3 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1
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=

∫
Ω

(v2 − vε2)ddcvk1 ∧ ddcv3 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1.

For all k, vk1 is locally uniformly bounded. Using Theorem 3.4 and the fact that
vε2 ↓ v2, the last integral tends to 0 uniformly in k. It follows that∫

Ω
ηvk1dd

cv2 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1

≥ −ε+

∫
Ω
ηvk1dd

cvε2 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1 ≥ · · ·

≥ −(p− 1)ε

+

∫
Ω
ηvk1dd

cvε2 ∧ ddcv
ε1
3 ∧ · · · ∧ dd

cv
εm−p−2

m−p ∧ T ∧ βn−m ∧ ddcϕ1,

where 0 < εm−p−2 < · · · < ε1 < ε. Since the sequence (vk1 ) is increasing almost
everywhere to v1 with respect to capm,T , we get

lim inf
k→+∞

∫
Ω
ηvk1dd

cv2 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1

≥ −(p− 1)ε+

∫
Ω
ηv1dd

cvε2 ∧ · · · ∧ ddcv
εm−p−2

m−p ∧ T ∧ βn−m ∧ ddcϕ1.

By taking the limit when ε ↓ 0, we obtain

lim inf
k→+∞

∫
Ω
ηvk1dd

cv2 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1

≥
∫

Ω
ηv1dd

cv2 ∧ · · · ∧ ddcvm−p ∧ T ∧ βn−m ∧ ddcϕ1.

Using (3.2), we obtain the following weak convergence:

lim
j→+∞

vj1T ∧ β
n−m ∧ ddcvj2 ∧ · · · ∧ dd

cvjm−p ∧ ddcϕ1

= v1T ∧ βn−m ∧ ddcv2 ∧ · · · ∧ ddcvm−p ∧ ddcϕ1.

The same reason applied to ϕ2 gives the desired result.

In the following theorem we will prove the convergence of the sequence
(ddcuk ∧ Tk ∧ βn−m)k (here the current T is no longer fixed and is replaced
by a sequence of currents that converges towards it). This result generalizes
Elkhadhra’s Theorem [9] proved for the limit case m = n.

Theorem 3.7. Let T and Tk be closed m-positive currents of bidimension
(p, p) in Ω such that Tk converges weakly to T in Ω. Let u and uk be locally
uniformly bounded m − sh functions in Ω such that uk → u in capm,T on each
E b Ω. Assume that

‖Tk ∧ βn−m‖ � capm,T

on each E b Ω uniformly as k →∞. Then

ddcuk ∧ Tk ∧ βn−m → ddcu ∧ T ∧ βn−m weakly in Ω.
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Proof. It suffices to prove that ukTk ∧ βn−m → uT ∧ βn−m weakly in Ω. For
this, let ϕ be a test form on Ω, E = supp(ϕ) and let K be a compact subset of Ω
such that E ⊂ K◦. Since ‖Tk∧βn−m‖ � capm,T on K uniformly for all k, we get
that for every ε > 0 there exists δ > 0 and k0 ∈ N such that for any Borel subset
K1 ⊂ K◦ with capm,T (K1) < δ, we have ||Tk ∧βn−m||(K1) < ε uniformly for k ≥
k0. Now, by Theorem 3.4, there exists an open set O ⊂ Ω with capm,T (O) < δ
such that u is continuous on Ω rO. Thus, we can write uk = vk + wk, u = v +
w, where v is a continuous function in Ω, w = wk = 0 on Ω rO, for each k and
all vk, wk, v, w are locally uniformly bounded on Ω by a constant independent of
δ. It is easy to check that∣∣∣∣∫

Ω
(ukTk − uT ) ∧ βn−m ∧ ϕ

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

(vk − v)Tk ∧ βn−m ∧ ϕ
∣∣∣∣

+

∣∣∣∣∫
Ω
v(Tk − T ) ∧ βn−m ∧ ϕ

∣∣∣∣+

∣∣∣∣∫
Ω

(wkTk − wT ) ∧ βn−m ∧ ϕ
∣∣∣∣ . (3.3)

As v = u, vk = uk on ΩrO, the first term in the right-hand side of inequality is
bounded by∣∣∣∣∫

ErO
(uk − u)Tk ∧ βn−m ∧ ϕ

∣∣∣∣+

∣∣∣∣∫
O∩E

(vk − v)Tk ∧ βn−m ∧ ϕ
∣∣∣∣ .

As the functions uk, u are locally uniformly bounded, there existA,B independent
of k and ε such that∣∣∣∣∫

ErO
(uk − u)Tk ∧ βn−m ∧ ϕ

∣∣∣∣ ≤ A1

∫
ErO

| uk − u | Tk ∧ βp

= A1

(∫
(ErO)∩{|uk−u|<ε}

|uk − u|Tk ∧ βp

+

∫
(ErO)∩{|uk−u|≥ε}

| uk − u | Tk ∧ βp
)

≤ A1ε||Tk ∧ βn−m||(E) +A2||Tk ∧ βn−m||(E ∩ {|uk − u| ≥ ε}).

Now, using the fact that Tk ∧ βn−m → T ∧ βn−m weakly in Ω, we get that ‖Tk ∧
βn−m‖(E) is uniformly bounded.

On the other hand, since capm,T (E ∩{|uk − u| ≥ ε})→ 0 as k →∞, then for
k ≥ k1 large enough we deduce that capm,T (E ∩ {|uk − u| ≥ ε}) < δ. It follows
that ‖Tk ∧ βn−m‖(E ∩ {|uk − u| ≥ ε}) < ε for all k ≥ max(k0, k1). Hence we get
that

lim
k→+∞

∣∣∣∣∫
ErO

(uk − u)Tk ∧ βn−m ∧ ϕ
∣∣∣∣ ≤ A3ε.

Since vk, v are locally uniformly bounded, there exists a constant A4 which does
not depend on ε and k such that∣∣∣∣∫

O∩E
(vk − v)Tk ∧ βn−m ∧ ϕ

∣∣∣∣ ≤ A4‖Tk ∧ βn−m‖(O ∩ E).
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Since O ∩ E ⊂ K and capm,T (O ∩ E) < δ, we have∣∣∣∣∫
O∩E

(vk − v)Tk ∧ βn−m ∧ ϕ
∣∣∣∣ ≤ A4‖Tk ∧ βn−m‖(O ∩ E) < A4ε for all k ≥ k0.

It follows that if k → +∞, then the first term in the right-hand side of inequality
(3.3) is less than (A3 + A4)ε, while the second one converges to zero because of
the continuity of v and the fact that Tk ∧ βn−m → T ∧ βn−m weakly in Ω. For
the third term, since wk, w are locally uniformly bounded on Ω and are vanishing
on Ω rO, there exists a constant A5 > 0 such that∣∣∣∣∫

Ω
(wkTk − wT ) ∧ βn−m ∧ ϕ

∣∣∣∣ ≤ A5(‖Tk ∧ βn−m‖(O∩E) + ‖T ∧ βn−m‖(O∩E)).

As explained above, we have ‖Tk ∧ βn−m‖(O ∩ E) < ε for all k ≥ k0. On the
other hand, since O ∩K◦ is open and Tk ∧ βn−m → T ∧ βn−m as currents in Ω,
we can easily prove that

‖T ∧ βn−m‖(O ∩E) ≤ ‖T ∧ βn−m‖(O ∩K◦) ≤ lim
k→+∞

‖Tk ∧ βn−m‖(O ∩K◦) ≤ ε.

The last inequality follows from the fact that capm,T (O ∩K◦) < δ. Finally, by
summing up the three terms in the right-hand side of inequality (3.3), we obtain
the estimate

lim
k→+∞

∣∣∣∣∫
Ω

(ukTk − uT ) ∧ βn−m ∧ ϕ
∣∣∣∣ ≤ A6ε,

where A6 is a constant not depending on ε. Since ε is arbitrary, the result
follows.

4. Range of the operator T ∧ βn−m ∧ (ddc.)m−p

Proposition 4.1. Let Ω be a bounded open subset of Cn and let T be an
m-positive closed current of bidimension (n − p, n − p), p ≤ m ≤ n, defined on
Ω. Let also u, v ∈ SHm(Ω) ∩ L∞(Ω) such that

lim sup
ξ→∂Ω

ξ∈SuppT

|u(ξ)− v(ξ)| = 0.

Then, for all δ > 0 and 0 < k < 1, one has

capm,T ({|u− v| ≥ δ}) ≤ [(m− p)!]2

(1− k)m−pδm−p

×
∥∥T ∧ βn−m ∧ (ddcu)m−p − T ∧ βn−m ∧ (ddcv)m−p

∥∥
{|u−v|>kδ} .

In particular, if T ∧ βn−m ∧ (ddcu)m−p = T ∧ βn−m ∧ (ddcv)m−p, then u = v
almost everywhere with respect to capm,T .
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Proof. Let w ∈ SHm(Ω, [0, 1]), δ > 0 and k ∈]0, 1[. Using Lemma 3 in [7] and
the fact that

{| u− v |≥ δ} ⊂ {|u− v + δk| ≥ (1− k)δ},

we can obtain∫
{|u−v|≥δ}

T ∧ βn−m ∧ (ddcw)m−p

≤ 1

(1− k)m−pδm−p

∫
{u+δ≤v}

(v − u− kδ)m−pT ∧ βn−m ∧ (ddcw)m−p

+
1

(1− k)m−pδm−p

∫
{v+δ≤u}

(u− v − kδ)m−pT ∧ βn−m ∧ (ddcw)m−p

≤ 1

(1− k)m−pδm−p

∫
{u+kδ<v}

(v − u− kδ)m−pT ∧ βn−m ∧ (ddcw)m−p

+
1

(1− k)m−pδm−p

∫
{v+kδ<u}

(u− v − kδ)m−pT ∧ βn−m ∧ (ddcw)m−p

≤ [(m− p)!]2

(1− k)m−pδm−p

×
∫
{|u−v|>kδ}

(1− w)(χ{u+kδ<v} − χ{v+kδ<u})T ∧ βn−m ∧ (ddcu)m−p

− [(m− p)!]2

(1− k)m−pδm−p

×
∫
{|u−v|>kδ}

(1− w)(χ{u+kδ<v} − χ{v+kδ<u})T ∧ βn−m ∧ (ddcv)m−p

≤ [(m− p)!]2

(1− k)m−pδm−p

×
∥∥T ∧ βn−m ∧ (ddcu)m−p − T ∧ βn−m ∧ (ddcv)m−p

∥∥
{|u−v|>kδ} .

The result follows.

Corollary 4.2. Let Ω be a bounded open subset of Cn and let T be an m-
positive closed current of bidimension (n − p, n − p) (p ≤ m ≤ n) defined on Ω
and u, uj ∈ SHm(Ω) ∩ L∞(Ω). Assume that:

i) lim sup
ξ→∂Ω

ξ∈SuppT

|uj(ξ)− u(ξ)| = 0 uniformly on j.

ii) For all E b Ω, one has∥∥T ∧ βn−m ∧ (ddcuj)
m−p − T ∧ βn−m ∧ (ddcu)m−p

∥∥
E
→ 0.

Then uj converges to u with respect to capacity capm,T on Ω.

Throughout this section we denote by µ a positive measure on a bounded
open set Ω, by λ, the Lebesgue measure and by T , an m-positive closed current
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of bidimension (n − p, n − p) (p ≤ m ≤ n). We will solve the following Hessian
equation on the set of m-subharmonic functions

T ∧ βn−m ∧ (ddc.)m−p = µ.

Proof of Theorem 1.1. Let A > 0 such that for all z ∈ Ω, one has A > |z|.
Take c > 0 such that c ≥ |v(z)| + |u1(w)| + 1 for all z ∈ Ω and w ∈ ∂Ω. Using
Lemma 3 from [7] and the hypothesis 1), we get∫

{uj<v−c}

(
1− |z|

2

A2

)
T ∧ βn−m ∧ (ddcuj)

m−p

≥
∫
{uj<v−c}

(
1− |z|

2

A2

)
T ∧ βn−m ∧ (ddcv)m−p

+
1

[(m− p)!]2A2(m−p)

∫
{uj<v−c}

(v − c− uj)m−p T ∧ βn−p

≥
∫
{uj<v−c}

(
1− |z|

2

A2

)
dµ

+
1

([(m− p)!]2A2(m−p)

∫
{uj<v−c}

(v − c− uj)m−p T ∧ βn−p.

As ‖µj − µ‖Ω → 0, then

0 ≥ lim inf
j→+∞

∫
{uj<v−c}

(v − c− uj)m−p T ∧ βn−p

≥
∫

Ω
lim inf
j→+∞

(
χ{uj<v−c}(v − c− uj)

m−p
)
T ∧ βn−p

≥
∫

Ω
χ{lim supj→+∞ uj<v−c}

(
lim inf
j→+∞

|v − c− uj |
)m−p

T ∧ βn−p

≥
∫

Ω
χ{lim supj→+∞ uj<v−c}

(
v − c− lim sup

j→+∞
uj

)m−p
T ∧ βn−p.

It follows that lim supj→+∞ uj ≥ v− c for ‖T ∧βn−m‖-almost everywhere. Thus,

lim sup
j→+∞

uj 6= −∞.

If we take
A :=

⋃
j

(
sup{uj , uj+1, . . .} <

?
sup{uj , uj+1, ...}

)
,

after using [2], we can see that there exists g ∈ SHm(Ω) such that

sup{uj , uj+1, . . .} = sup?{uj , uj+1, . . .} ↓ lim sup
j→+∞

uj = g on Ω\A.

As capm,T (A) = 0 and the ‖T ∧ βn−m‖−negligible set are λ-negilgeable, we get
that g ≥ v − c almost everywhere. It follows that g is bounded on Ω. Using
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Theorem 3.5, it suffices to prove that uj converges to g with respect to capacity
capm,T . Letting E ⊂⊂ Ω and δ > 0, one has

capm,T (E ∩ {|g − uj | ≥ δ}) ≥ capm,T

(
E ∩

{
|g − sup{uj , uj+1, . . .}| ≥

δ

2

})
+ capm,T

({
| sup{uj , uj+1, . . .} − uj | ≥

δ

2

})
.

By applying Theorem 3.4 and Dini’s theorem on g, it is easy to check that the
sequence sup{uj , uj+1, ...} ↓ g uniformly on E outside a set of small capacity
capm,T . It follows that

capm,T

(
E ∩

{
|g − sup{uj , uj+1, . . .}| ≥

δ

2

})
tends to 0 when j goes to +∞.

Now, let us prove that

B :=

{
| sup{uj , uj+1, . . .} − uj | ≥

δ

2

}
⊂

+∞⋃
l=0

{
|uj+l+1 − uj+l| ≥

δ

2l+j+2

}
.

We can assume that [(m− p)!]2‖µj − µ‖ ≤ 1
2(m−p+1)j . So, by Proposition 4.1, one

has for all δ > 0,

capm,T {|uj+1 − uj | > δ} ≤ (m− p)!2

δm−p
‖µj+1 − µj‖

≤ (m− p)!2

δm−p
(‖µj+1 − µ‖Ω + ‖µ− µj‖Ω) ≤ 2

δm−p2(m−p+1)j

and we deduce that

capm,T

({
| sup{uj , uj+1, . . .} − uj | ≥

δ

2

})
≤

+∞∑
l=0

capm,T {|uj+l+1 − uj+l| ≥
δ

2l+j+2
} ≤ 4m−p

δm−p2j
.

Hence the sequence uj converges to g with respect to capacity capm,T and, by
Theorem 3.5, we get that the sequence (ddcuj)

m−p ∧ T ∧ βn−m converges weakly
to (ddcg)m−p ∧ T ∧ βn−m.

Remark 4.3. Without the first hypothesis, we cannot have the existence of
the solution to the equation T ∧βn−m∧(ddc.)m−p = µ even in the trivial case T =
1 and m = n. In fact, using [5], there exists f ∈ L1(Ω) such that the equation
(ddcu)n = fdλ has no solution in PSH(Ω) ∩ L∞(Ω).
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Слабкий розв’язок комплексного рiвняння гессiана,
пов’язаного з m-позитивним замкнутим потоком

Jawhar Hbil and Mohamed Zaway

Метою даної статтi є вивчення iснування розв’язку комплексного
рiвняння гессiана, пов’язаного з m-позитивним замкнутим потоком T .
Даємо достатню умову на T i мiру µ, так що рiвняння T ∧ βn−m ∧
(ddc.)m−p = µ має розв’язок на множинi m-субгармонiчних функцiй.
Для цього встановлюємо зв’язок мiж збiжнiстю вiдносно capm,T послi-
довностi m-субгармонiчних функцiй та слабкою збiжнiстю асоцiйованої
гессiанової мiри.

Ключовi слова: m-позитивний замкнутий потiк, m-субгармонiчна
функцiя, ємнiсть, оператор гессiана


	Introduction
	Preliminaries
	Weak convergence and convergence with respect to cap (m,T)
	Range of the operator T beta 

