A Weak Solution to the Complex Hessian Equation Associated to an m-Positive Closed Current

Jawhar Hbil and Mohamed Zaway

Abstract

The aim of this paper is to study the existence of a solution to the complex Hessian equation associated to an m-positive closed current T. We give a sufficient condition on T and the measure μ so that the equation $T \wedge \beta^{n-m} \wedge\left(d d^{c} .\right)^{m-p}=\mu$ has a solution on the set of m-subharmonic functions. For this we establish a connection between the convergence in cap $_{m, T}$ of a sequence of m-subharmonic functions and the weak convergence of the associated Hessian measure.

Key words: m-positive closed current, m-subharmonic function, Capacity, Hessian operator

Mathematical Subject Classification 2010: 32U40; 32U05; 32U20

1. Introduction

The Dirichlet problem for the complex Monge-Ampere operator was studied by Bedford and Taylor [1] who proved first that the operator $\left(d d^{c} .\right)^{n}$ is well defined on the set of locally bounded plurisubharmonic functions in a bounded domain Ω of \mathbb{C}^{n} and then solved the Monge-Ampere equation $\left(d d^{c} .\right)^{n}=0$. This problem achieved a considerable progress when several researchers studied the case of nondegenerated Monge-Ampere equation and the regularity of its solution. Recently Błocki [2] introduced the notion of m-subharmonic function denoted by $S H_{m}(\Omega)$ for $1 \leq m \leq n$ and developed the pluripotential theory for the complex Hessian operator. This allows $[2,8,10,13]$ to study the Dirichlet problem for the Hessian equation using pluripotential techniques adapted to the complex Hessian equation to settle the question of the existence of its weak solutions. In 2013, Dhouib and Elkhadhra [7] introduced analogous Cegrell classes for studying the complex Hessian operator with respect to an m-positive closed current T. The purpose of our paper is to study the existence of a solution to the Hessian equation with respect to T which is given as follows:

$$
\begin{equation*}
T \wedge \beta^{n-m} \wedge\left(d d^{c} .\right)^{m-p}=\mu, \tag{1.1}
\end{equation*}
$$

where $\beta:=d d^{c}|z|^{2}$.

[^0]Using the notion of m-capacity $\operatorname{cap}_{m, T}$ introduced by [7] and under some conditions on the given current and measure μ, we prove the existence of a solution for equation (1.1). This result is given by the following main result.

Theorem 1.1. Assume that all $\left\|T \wedge \beta^{n-m}\right\|-$ negligible sets are negligible for the Lebesgue measure and that:

1) There exists $v \in S H_{m}(\Omega) \cap L^{\infty}(\Omega)$ such that $T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p} \geq \mu$.
2) There exists a sequence of measures $\mu_{j}:=T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p}$ such that $\left\|\mu_{j}-\mu\right\|_{\Omega} \rightarrow 0$, where $u_{j} \in S H_{m}(\Omega) \cap \mathcal{C}(\bar{\Omega}), u_{j}=u_{1}$ on $\partial \Omega$ for all $j \in \mathbb{N}$.
3) For all $j \in \mathbb{N}$, one has $\operatorname{cap}_{m, T}\left(\sup \left\{u_{k} \mid k \geq j\right\}<\sup ^{\star}\left\{u_{k} \mid k \geq j\right\}\right)=0$.

Then there exists $u \in S H_{m}(\Omega) \cap L^{\infty}(\Omega)$ such that $T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}=\mu$.
The main tool for proving the above theorem is to find a suitable condition on the convergence of a sequence u_{j} to u to ensure the weak convergence of the measures $T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p}$ to $T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}$. In the case $T=1$ and $m=n$, Cegrell [3] and Lelong [12] observed that the $\mathbb{L}_{\text {loc }}^{1}$-convergence of u_{j} to u is not sufficient for obtaining the weak convergence of the measure $\left(d d^{c} u_{j}\right)^{n}$ to $\left(d d^{c} u\right)^{n}$. In 1996, Xing [14] gave a sharp sufficient condition to ensure the convergence of $\left(d d^{c} u_{j}\right)^{n}$ to $\left(d d^{c} u\right)^{n}$. Here we treat the problem in the case of m positive currents and we prove that convergence with respect to capacity $\operatorname{cap}_{m, T}$ is sufficient for obtaining the required convergence and also, under some conditions, we show that the converse is true. We study also the convergence of $d d^{c} u_{k} \wedge T_{k} \wedge$ β^{n-m} to $d d^{c} \wedge u T \wedge \beta^{n-m}$, where $\left(T_{k}\right)_{k}$ is a sequence of m-positive closed currents that converges to T. We prove, under a suitable condition on the growth of the mass of $T_{k} \wedge \beta^{n-m}$ with respect to $\operatorname{cap}_{m, T}$, that such convergence holds.

2. Preliminaries

Let us recall first the notion of m-subharmonicity introduced by Błocki in [2].

Definition 2.1. A real form α of bidegree $(1,1)$ in a domain Ω of \mathbb{C}^{n} is said to be m-positive if at every point of Ω one has

$$
\alpha^{j} \wedge \beta^{n-j} \geq 0, \quad j=1, \ldots, m
$$

The above definition coincides with the standard definition of positivity introduced by Lelong for the case $m=n$. To obtain a similar analogy, Dhouib and Elkhadhra [7] introduced the following definition of positivity for (p, p)-forms.

Definition 2.2. Let φ be a real (p, p)-form defined on an open subset Ω of \mathbb{C}^{n} and let m be an integer such that $p \leq m \leq n$.

1. The form φ is said to be m-positive on Ω if at every point of Ω one has

$$
\varphi \wedge \beta^{m-n} \wedge \alpha_{1} \wedge \cdots \wedge \alpha_{m-p} \geq 0
$$

for every m-positive $(1,1)$-form $\alpha_{1}, \ldots, \alpha_{m-p}$.
2. The form φ is said to be m-strongly positive on Ω if it can be written as follows:

$$
\varphi=\sum_{k=1}^{N} \lambda_{k} \alpha_{1}^{k} \wedge \cdots \wedge \alpha_{p}^{k}
$$

where $\alpha_{1}^{k}, \ldots, \alpha_{p}^{k}$ are m-positive forms on Ω and $\lambda_{k} \geq 0$.
By duality, one can define the notion of m-positive currents as follows.
Definition 2.3. Let T be a current of bidimension $(n-p, n-p)$ on Ω and let m be an integer satisfying $p \leq m \leq n$.

1. The current T is called m-positive if $\left\langle T, \beta^{n-m} \wedge \varphi\right\rangle \geq 0$ for every m-strongly positive form φ of bidegree $(m-p, m-p)$.
2. \quad The current T is called m-strongly positive if $\left\langle T, \beta^{n-m} \wedge \varphi\right\rangle \geq 0$ for every m-positive form φ of bidegree $(m-p, m-p)$.

Remark 2.4.

1. The above definitions generalize the standard definition of positivity for forms and currents, it suffices to take the case $m=n$ to recover them.
2. If T is an m-positive current, then the current $T \wedge \beta^{n-m}$ is positive.
3. There is no link between s-positive currents and r-positive currents for every $r \neq s$.

Definition 2.5. A function $u: \Omega \rightarrow \mathbb{R} \cup\{-\infty\}$ is called m-subharmonic if it is subharmonic and

$$
d d^{c} u \wedge \beta^{n-m} \wedge \alpha_{1} \wedge \cdots \wedge \alpha_{m-1} \geq 0
$$

for all m-positive forms $\alpha_{1}, \ldots, \alpha_{m-1}$. We denote by $S H_{m}(\Omega)$ the set of all m subharmonic functions defined on Ω.

We cite below some well-known properties of m-subharmonicity. For more details, one can refer to $[2,7,13]$.

Proposition 2.6.

1. If $u \in \mathcal{C}^{2}(\Omega)$, then $u \in S H_{m}(\Omega)$ if and only if the form $d d^{c} u$ is m-positive on Ω.
2. If $u \in S H_{m}(\Omega)$, then the current $d d^{c} u$ is m-positive.
3. If $u, v \in S H_{m}(\Omega)$, then $\lambda u+\mu v \in S H_{m}(\Omega), \forall \lambda, \mu>0$.
4. $\quad \operatorname{PSH}(\Omega)=S H_{n}(\Omega) \subsetneq \cdots \subsetneq S H_{m}(\Omega) \subsetneq \cdots \subsetneq S H_{1}(\Omega)=S H(\Omega)$.
5. If u is m-subharmonic on Ω, then the standard regularization $u * \chi_{\varepsilon}$ is also m-subharmonic on $\Omega_{\varepsilon}:=\{x \in \Omega \mid d(x, \partial \Omega)>\varepsilon\}$.
6. If $\left(u_{i}\right)_{j}$ is a decreasing sequence of m-subharmonic functions, then $u:=$ $\lim u_{j}$ is either m-subharmonic or identically equal to $-\infty$.

The m-capacity of a subset E in Ω with respect to a given current T is defined as follows.

Definition 2.7. For every compact K of Ω, the m-capacity of K relatively to an m-positive current T denoted by $\operatorname{cap}_{m, T}(K)$ is defined by

$$
\begin{aligned}
\operatorname{cap}_{m, T}(K, \Omega) & =\operatorname{cap}_{m, T}(K) \\
& :=\sup \left\{\int_{K}\left(d d^{c} v\right)^{m-p} \wedge T \wedge \beta^{n-m} \mid v \in S H_{m}(\Omega), 0 \leq v \leq 1\right\}
\end{aligned}
$$

and for every $E \subset \Omega, \operatorname{cap}_{m, T}(E, \Omega)=\sup \left\{\operatorname{cap}_{m, T}(K) \mid K\right.$ is a compact of $\left.\Omega\right\}$.
Basing on the definitions cited below, Dhouib and Elkhadhra [7] defined the Hessian operator with respect to a given m-positive closed current of bidegree (p, p) to generalize the well-known works of Bedford and Taylor [1], Błocki [2], Abdullaev and Sadullaev [13] and Lu [11]. They proved that the Hessian operator $\left(d d^{c} .\right)^{p} \wedge T \wedge \beta^{n-m}$ is well defined on the set of bounded m-subharmonic functions (eventually, also for m-subharmonic functions which are bounded near $\partial \Omega \cap \operatorname{Supp} T)$ and studied its pluripotential properties. An essential tool used in their work is the convergence with respect to the capacity $\operatorname{cap}_{m, T}$ defined by using the complex Hessian measure associated to T. In the next section, we are intending to give a link between the weak convergence and the convergence with respect to $\operatorname{cap}_{m, T}$.

3. Weak convergence and convergence with respect to $\mathrm{cap}_{m, T}$

The notion of the convergence in capacity $\operatorname{cap}_{m, T}$ was introduced in [7] as follows.

Definition 3.1. Let Ω be an open subset of $\mathbb{C}^{n}, E \subset \Omega$ and let T be an m-positive closed current of bidimension $(n-p, n-p), p \leq m \leq n$. A sequence of functions $\left(u_{j}\right)_{j}$ defined on Ω is said to be convergent with respect to $\operatorname{cap}_{m, T}$ to u on E if for all $t>0$ one has

$$
\lim _{j \rightarrow+\infty} \operatorname{cap}_{m, T}\left(E \cap\left\{\left|u-u_{j}\right|>t\right\}\right)=0
$$

We will prove first that every sequence of bounded m-subharmonic functions $\left(u_{j}\right)_{j}$ that decreases to a function u converges to u with respect to capacity $\operatorname{cap}_{m, T}$. This generalizes the result of Bedford and Taylor [1] for the limit case $m=n$ and $T=1$ and $\mathrm{Lu}[10]$ for the case $T=1$. To prove this, we will generalize first a result due to Dabbek and Elkhadra [6]. This result is given by the following lemma.

Lemma 3.2. Let $u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, \ldots, w_{p-1} \in S H_{m}(\Omega) \cap L^{\infty}(\Omega)$ and let T be an m-positive closed current on Ω of bidimension $(n-p, n-p), p \leq m \leq n$. Assume that $\left\{u_{1} \neq u_{2}\right\} \Subset \Omega$ and let $0 \leq \psi \in \mathcal{D}(\Omega), \psi=1$ on $\left\{u_{1} \neq u_{2}\right\}$. Then,

$$
\begin{aligned}
\left(\int_{\Omega} d\left(u_{1}-u_{2}\right) \wedge d^{c}\left(v_{1}-v_{2}\right) \wedge \chi\right)^{2} & \leq\left(\int_{\Omega} d\left(u_{1}-u_{2}\right) \wedge d^{c}\left(u_{1}-u_{2}\right) \wedge \chi\right) \\
& \times\left(\int_{\Omega} \psi d\left(v_{1}-v_{2}\right) \wedge d^{c}\left(v_{1}-v_{2}\right) \wedge \chi\right)
\end{aligned}
$$

where $\chi=T \wedge \beta^{n-m} \wedge d d^{c} w_{1} \wedge d d^{c} w_{2} \wedge \cdots \wedge d d^{c} w_{m-p-1}$.
Proof. Using Theorem 2 from [7], it suffices to prove the result for the case when $u_{1}-u_{2}, v_{1}-v_{2}$ are smooth. It is easy to check that $(u, v) \mapsto \int_{\Omega} \psi d u \wedge$ $d^{c} v \wedge \chi$ is a positive and symmetric bilinear form on $\mathcal{C}^{\infty}(\Omega) \times \mathcal{C}^{\infty}(\Omega)$. Using the Cauchy-Schwartz inequality on $\left(u_{1}-u_{2}, v_{1}-v_{2}\right)$, when $u_{i}, v_{i} \in \mathcal{S} H_{m}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$, we get the desired inequality.

Theorem 3.3. Let Ω be a bounded open subset of \mathbb{C}^{n} and let T be an m positive closed current on Ω of bidimension $(n-p, n-p), p \leq m \leq n$. If $u_{j}, u \in$ $S H_{m}(\Omega) \cap L_{l o c}^{\infty}(\Omega)$ such that $u_{j}=u$ on a fixed neighborhood of $\partial \Omega$ and u_{j} decreases to u, then for all $\delta>0$ one has

$$
\lim _{j \rightarrow+\infty} \operatorname{cap}_{m, T}\left\{z \in \Omega \mid u_{j}(z)>u(z)+\delta\right\}=0
$$

Proof. Without loss of generality, one can assume that $\delta=1$. We consider

$$
\Omega_{j}=\left\{z \in \Omega \mid u_{j}(z)>u(z)+1\right\}
$$

and \mathcal{U} such that $\left\{u_{j} \neq u\right\} \subset \mathcal{U} \Subset \Omega$. Let $v \in \mathcal{S} H_{m}(\Omega,[0,1])$, using the Stokes formula, we obtain

$$
\begin{aligned}
\int_{\Omega_{j}}\left(d d^{c} v\right)^{m-p} \wedge T \wedge \beta^{n-m} & \leq \int_{\mathcal{U}}\left(u_{j}-u\right)\left(d d^{c} v\right)^{m-p} \wedge T \wedge \beta^{n-m} \\
& =-\int_{\mathcal{U}} d\left(u_{j}-u\right) \wedge d^{c} v \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}
\end{aligned}
$$

Now, by Lemma 3.2, the right-hand side is dominated by

$$
C\left(\int_{\mathcal{U}} d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}\right)^{\frac{1}{2}}
$$

where

$$
C=\left(\int_{\mathcal{U}} d v \wedge d^{c} v \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}\right)^{\frac{1}{2}} \leq M<+\infty
$$

and M is a constant independent on v using the Chern-Levine-Nirenberg inequality [7]. Again, by the Stokes formula, we get

$$
\int_{\mathcal{U}} d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}
$$

$$
\begin{aligned}
& =-\int_{\mathcal{U}}\left(u_{j}-u\right) d d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m} \\
& =\int_{\mathcal{U}}\left(u-u_{j}\right)\left(d d^{c} u_{j}-d d^{c} u\right) \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m} \\
& \leq \int_{\mathcal{U}}\left(u_{j}-u\right) d d^{c} u \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}
\end{aligned}
$$

It follows that

$$
\int_{\Omega_{j}}\left(d d^{c} v\right)^{m-p} \wedge T \wedge \beta^{n-m} \leq C\left(\int_{\mathcal{U}}\left(u_{j}-u\right) d d^{c} u \wedge\left(d d^{c} v\right)^{m-p-1} \wedge T \wedge \beta^{n-m}\right)^{\frac{1}{2}}
$$

By repeating the process $(m-p-1)$-times, we get the following estimate:

$$
\int_{\Omega_{j}}\left(d d^{c} v\right)^{m-p} \wedge T \wedge \beta^{n-m} \leq C_{1}\left(\int_{\Omega}\left(u_{j}-u\right)\left(d d^{c} u\right)^{m-p} \wedge T \wedge \beta^{n-m}\right)^{\frac{1}{2 p}}
$$

where C_{1} is a constant which does not depend on j and v. As v is arbitrarily chosen, we deduce that $\lim _{j \rightarrow+\infty} \operatorname{cap}_{m, T}\left(\Omega_{j}\right)=0$.

The following theorem was proved in [7] and it will be useful later on.
Theorem 3.4. Let Ω be a bounded subset of $\mathbb{C}^{n}, u \in \mathcal{S} H_{m}(\Omega) \cap L_{\text {loc }}^{\infty}(\Omega)$ and let T be an m-positive closed current on Ω of bidimension $(n-p, n-p), p \leq m \leq$ n. Then, for all $\varepsilon>0$, there exists an open set $\mathcal{O}_{\varepsilon}$ of Ω such that $\operatorname{cap}_{m, T}\left(\mathcal{O}_{\varepsilon}, \Omega\right)<$ ε and u is continuous $\Omega \backslash \mathcal{O}_{\varepsilon}$.

Now we will establish the connection between the convergence in capacity of a sequence of m-subharmonic functions u_{j} and the weak convergence of the associated Hessian measure. A similar version of the first assertion in the theorem below was proved in [7] for m-subharmonic functions that are bounded only near the boundary of Ω, but with an additional sufficient condition (each of the Hessian measure of u_{j} is absolutely continuous with respect to $\left.\operatorname{cap}_{m, T}\right)$. Here we give a different proof for the case of locally bounded m-subharmonic functions and without any assumption on the Hessian measure of u_{j}. We will also prove the converse.

Theorem 3.5. Let Ω be an open subset of \mathbb{C}^{n} and let T be an m-positive closed current on Ω of bidimension $(n-p, n-p)$ and $\left(u_{j}\right)_{j}$ be a sequence of locally uniformly bounded m-subharmonic functions and $u \in \mathcal{S} H_{m}(\Omega) \cap L_{\text {loc }}^{\infty}(\Omega)$. Then

1. If u_{j} converges to u in capacity cap $_{m, T}$ on every $E \Subset \Omega$, then the sequence of currents $\left(d d^{c} u_{j}\right)^{m-p} \wedge T \wedge \beta^{n-m}$ converges weakly to $\left(d d^{c} u\right)^{m-p} \wedge T \wedge \beta^{n-m}$.
2. Assume that there exist $E \Subset \Omega$ such that for all $j, u_{j}=u$ on $\Omega \backslash E$ and that the sequences $u\left(d d^{c} u_{j}\right)^{m-p} \wedge T \wedge \beta^{n-m}, u_{j}\left(d d^{c} u\right)^{m-p} \wedge T \wedge \beta^{n-m}$ and $u_{j}\left(d d^{c} u_{j}\right)^{m-p} \wedge T \wedge \beta^{n-m}$ converge weakly to $u\left(d d^{c} u\right)^{m-p} \wedge T \wedge \beta^{n-m}$. Then u_{j} converges to u with respect to $\operatorname{cap}_{m, T}$ on E.

Proof. 1. We proceed by induction on $m-p$. The case $m-p=1$ will be proved if we show that $u_{j} T \wedge \beta^{n-m}$ converges to $u T \wedge \beta^{n-m}$. Let φ be a smooth form with compact support in $\Omega\left(\varphi \in \mathcal{D}_{m-p, m-p}(\Omega)\right)$ such that supp $\varphi \subset \Omega_{1} \Subset \Omega$. Then,

$$
\begin{aligned}
& \left|\int_{\Omega}\left(u_{j} T-u T\right) \wedge \beta^{n-m} \wedge \varphi\right| \leq C \int_{\Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-p} \\
& \quad=C \int_{\left\{\left|u_{j}-u\right| \leq \delta\right\} \cap \Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-p}+C \int_{\left\{\left|u_{j}-u\right|>\delta\right\} \cap \Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-p} \\
& \quad \leq C \delta| | T \wedge \beta^{n-m}\left|\|_{\Omega_{1}}+C\right|\left|u_{j}-u\right|_{L^{\infty}\left(\Omega_{1}\right)} \int_{\left\{\left|u_{j}-u\right| \geq \delta\right\} \cap \Omega_{1}} T \wedge \beta^{n-p} \\
& \quad \leq C \delta| | T \wedge \beta^{n-m} \mid \|_{\Omega_{1}}+M \operatorname{cap}_{m, T}\left(\left\{z \in \Omega_{1} ;\left|u_{j}(z)-u(z)\right|>\delta\right\}\right) .
\end{aligned}
$$

This proves the case $m-p=1$ since δ is arbitrary, u_{j} converges to u in capacity $\operatorname{cap}_{m, T}$ and M is independent on j.

Assume by induction that the sequence $\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge \beta^{n-m}$ converges weakly to $\left(d d^{c} u\right)^{s} \wedge T \wedge \beta^{n-m}$ for $s<m-p$. It suffices to prove that $u_{j}\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge$ β^{n-m} converges weakly to $u\left(d d^{c} u\right)^{s} \wedge T \wedge \beta^{n-m}$. By Theorem 3.4, for all $\varepsilon>0$, there exists an open subset O_{ε} such that $\operatorname{cap}_{m, T}\left(O_{\varepsilon}\right)<\varepsilon$ and $u=\varphi+\psi$, where φ is continuous on Ω and $\psi=0$ on $\Omega \backslash O_{\varepsilon}$. Note that

$$
\begin{aligned}
u_{j}\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge \beta^{n-m}- & u\left(d d^{c} u\right)^{s} \wedge T \wedge \beta^{n-m} \\
= & \left(u_{j}-u\right)\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge \beta^{n-m} \\
& +\psi\left(\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge \beta^{n-m}-\left(d d^{c} u\right)^{s} \wedge T \wedge \beta^{n-m}\right) \\
& +\varphi\left(\left(d d^{c} u_{j}\right)^{s} \wedge T \wedge \beta^{n-m}-\left(d d^{c} u\right)^{s} \wedge T \wedge \beta^{n-m}\right)
\end{aligned}
$$

Denote the first, second, and third summands in the right-hand side of this equality by (1), (2), and (3), respectively. Since φ is continuous on Ω and using induction's hypothesis, we get that (3) tends weakly to 0 when $j \rightarrow \infty$.

For (1), let $\varphi \in \mathcal{D}_{m-p-s, m-p-s}(\Omega)$ such that $\operatorname{supp} \varphi \subset \Omega_{1} \Subset \Omega_{2} \Subset \Omega$. Then,

$$
\begin{aligned}
\mid \int_{\Omega}\left(u_{j}-\right. & u) T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{s} \wedge \varphi \mid \\
& \leq C \int_{\Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{s} \wedge\left(d d^{c}|z|^{2}\right)^{m-p-s} \\
& \leq C \int_{\Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-m} \wedge\left(d d^{c}\left(u_{j}+|z|^{2}\right)\right)^{m-p} \\
& \leq C \int_{\left\{\left|u_{j}-u\right|>\delta\right\} \cap \Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-m} \wedge d d^{c}\left(u_{j}+|z|^{2}\right)^{m-p} \\
& +C \int_{\left\{\left|u_{j}-u\right| \leq \delta\right\} \cap \Omega_{1}}\left|u_{j}-u\right| T \wedge \beta^{n-m} \wedge d d^{c}\left(u_{j}+|z|^{2}\right)^{m-p} \\
& \leq C_{1} \operatorname{cap}_{m, T}\left(z \in \Omega_{1} ;\left|u_{j}(z)-u(z)\right|>\delta\right)+\delta M| | T \wedge \beta^{n-m} \|_{\Omega_{2}} .
\end{aligned}
$$

Since the sequence $\left(u_{j}\right)_{j}$ is uniformly bounded, M and C_{1} do not depend on j and $u_{j} \rightarrow u$ in capacity $\operatorname{cap}_{m, T}$, we get that (1) tends to 0 .

The same reason for (2) gives

$$
\begin{aligned}
\left|\int_{\Omega_{1} \cap O_{\varepsilon}} \psi T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{s} \wedge \varphi\right| & \leq A \int_{\Omega_{1} \cap O_{\varepsilon}} T \wedge \beta^{n-m} \wedge\left(d d^{c}\left(u_{j}+\left|z^{2}\right|\right)\right)^{m-p} \\
& \leq B_{1} \operatorname{cap}_{m, T}\left(O_{\varepsilon}\right) \leq \varepsilon B_{1}
\end{aligned}
$$

Using the same reasoning as above, one can obtain that

$$
\left|\int_{\Omega_{1} \cap O_{\varepsilon}} \psi T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{s} \wedge \varphi\right| \leq \varepsilon B_{2}
$$

2. Let Ω^{\prime} be an open subset such that $E \Subset \Omega^{\prime} \Subset \Omega, \varphi \in S H_{m}(\Omega,[0,1])$ and $\delta>0$. By the Stokes formula and Lemma 3.2, we obtain

$$
\begin{aligned}
& \int_{\left\{\left|u_{j}-u\right|>\delta\right\}} T \wedge \beta^{n-m} \wedge\left(d d^{c} \varphi\right)^{m-p} \\
& \leq \frac{1}{\delta^{2}} \int_{\Omega^{\prime}}\left(u_{j}-u\right)^{2} T \wedge \beta^{n-m} \wedge\left(d d^{c} \varphi\right)^{m-p} \\
&= \frac{-1}{\delta^{2}} \int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right)^{2} \wedge d^{c} \varphi \wedge\left(d d^{c} \varphi\right)^{m-p-1} \\
& \leq C_{1}\left(\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right)^{2} \wedge d^{c}\left(u_{j}-u\right)^{2} \wedge\left(d d^{c} \varphi\right)^{m-p-1}\right)^{\frac{1}{2}} \\
& \leq 2 C_{1} C_{2}\left(\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} \varphi\right)^{m-p-1}\right)^{\frac{1}{2}}
\end{aligned}
$$

where

$$
C_{1}:=\frac{1}{\delta^{2}} \int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d \varphi \wedge d^{c} \varphi \wedge\left(d d^{c} \varphi\right)^{m-p-1}<+\infty
$$

and $C_{2}:=\left\|u_{j}-u\right\|_{\infty}<\infty$. As

$$
d d^{c}\left(u_{j}-u\right) \wedge T \wedge \beta^{n-m} \leq d d^{c}\left(u_{j}+u\right) \wedge T \wedge \beta^{n-m}
$$

then, by repeating the same operation $(m-p-1)$-times, we get

$$
\begin{aligned}
& \int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} \varphi\right)^{m-p-1} \\
& \quad=\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c} \varphi \wedge d d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c} \varphi\right)^{m-p-2} \\
& \quad \leq B\left(\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge d d^{c}\left(u_{j}+u\right) \wedge\left(d d^{c} \varphi\right)^{m-p-2}\right)^{\frac{1}{2}} \\
& \quad \leq \cdots \\
& \quad \leq B_{1}\left(\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right) \wedge\left(d d^{c}\left(u_{j}+u\right)\right)^{m-p-1}\right)^{\frac{1}{2(m-p)}} \\
& \quad \leq B_{2}\left(\int_{\Omega^{\prime}} T \wedge \beta^{n-m} \wedge d\left(u_{j}-u\right) \wedge d^{c}\left(u_{j}-u\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\wedge \sum_{k=0}^{m-p-1}\left(d d^{c} u_{j}\right)^{m-p-k-1} \wedge\left(d d^{c} u\right)^{k}\right)^{\frac{1}{2(m-p)}} \\
= & B_{2}\left(\int _ { \Omega ^ { \prime } } (u _ { j } - u) \left[T \wedge \beta^{n-m} \wedge\right.\right. \\
\wedge & \left(d d^{c} u_{j}-d d^{c} u\right) \\
& \left.\left.\wedge \sum_{k=0}^{m-p-1}\left(d d^{c} u_{j}\right)^{m-p-k-1} \wedge\left(d d^{c} u\right)^{k}\right]\right)^{\frac{1}{2(m-p)}} \\
= & B_{2}\left(\int _ { \Omega ^ { \prime } } (u _ { j } - u) \left[T \wedge \beta^{n-m} \wedge\right.\right. \\
& \left(d d^{c} u_{j}\right)^{m-p} \\
& \left.\left.-T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}\right]\right)^{\frac{1}{2(m-p)}}
\end{aligned}
$$

where B_{2} does not depends on j and φ. As $u_{j}=u$ on $\Omega^{\prime} \backslash E$ and the sequences $u T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p}, u_{j} T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}, u_{j} T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p}$ converge to $u T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}$, then we get

$$
\lim _{j \rightarrow+\infty} \int_{\Omega^{\prime}}\left(u_{j}-u\right) T \wedge \beta^{n-m} \wedge\left[\left(d d^{c} u_{j}\right)^{m-p}-\left(d d^{c} u\right)^{m-p}\right]=0
$$

It follows that

$$
\operatorname{cap}_{m, T}\left(\left|u_{j}-u\right|>\delta, \Omega\right)=0
$$

Proposition 3.6. Let T be an m-positive closed current on Ω of bidimen-$\operatorname{sion}(n-p, n-p), v_{1}, \ldots, v_{m-p} \in S H_{m}(\Omega) \bigcap L^{\infty}(\Omega) ; v_{1}^{j}, \ldots, v_{m-p}^{j} \in S H_{m}(\Omega)$. Assume that the sequence $\left(v_{k}^{j}\right)_{j}$ is locally uniformly bounded and increases almost everywhere to v_{k} with respect to $\operatorname{cap}_{m, T}$. Then

$$
T \wedge \beta^{n-m} \wedge d d^{c} v_{1}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \rightarrow T \wedge \beta^{n-m} \wedge d d^{c} v_{1} \wedge \cdots \wedge d d^{c} v_{m-p}
$$

weakly in Ω.
Proof. We proceed as in [4]. Let φ and $\eta \in \mathcal{D}(\Omega)$ be such that $\eta \geq 0$ and $\eta \equiv$ 1 in a neighborhood of $\operatorname{supp} \varphi$. Let $\varphi_{1}, \varphi_{2} \in S H_{m}(\Omega) \cap \mathcal{C}^{\infty}(\Omega)$ be such that $\varphi=$ $\varphi_{1}-\varphi_{2}$. We have

$$
\begin{aligned}
& \int_{\Omega} \varphi T \wedge \beta^{n-m} \wedge d d^{c} v_{1}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \\
&=\int_{\Omega} v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi \\
&=\int_{\Omega} v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge\left(d d^{c} \varphi_{1}-d d^{c} \varphi_{2}\right)
\end{aligned}
$$

By induction, we assume that we have the following weak convergence:

$$
\lim _{j \rightarrow+\infty} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1}
$$

$$
\begin{equation*}
=T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \ldots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1} \tag{3.1}
\end{equation*}
$$

As $\left(v_{1}^{j}\right) \uparrow v_{1}$, for all $k \leq j$, one has

$$
\begin{aligned}
\int_{\Omega} \eta v_{1}^{k} T & \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& \leq \int_{\Omega} \eta v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& \leq \int_{\Omega} \eta v_{1} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

Using (3.1) and Theorem 3.4, one can prove that

$$
\begin{aligned}
\lim _{j \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{k} T \wedge \beta^{n-m} & \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& =\int_{\Omega} \eta v_{1}^{k} T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1} \\
\lim _{j \rightarrow+\infty} \int_{\Omega} \eta v_{1} T \wedge \beta^{n-m} & \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& =\int_{\Omega} \eta v_{1} T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

It follows that

$$
\begin{align*}
\int_{\Omega} \eta v_{1}^{k} T \wedge \beta^{n-m} & \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1} \\
& \leq \liminf _{j \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& \leq \limsup _{j \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& \leq \int_{\Omega} \eta v_{1} T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1} \tag{3.2}
\end{align*}
$$

To finish the proof, it suffices to prove that

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{k} T \wedge \beta^{n-m} & \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1} \\
& =\int_{\Omega} \eta v_{1} T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

Let $v_{2}^{\varepsilon}=v_{2} * \chi_{\varepsilon}$, where χ_{ε} is a regularizing kernel. We can assume that $v_{2}^{\varepsilon}=v_{2}$ on $\Omega \backslash \operatorname{supp} \eta$ and that $\eta=1$ in a neighborhood of $\left\{v_{2}^{\varepsilon} \neq v_{2}\right\}$. It is easy to check that

$$
\begin{aligned}
\int_{\Omega} \eta v_{1}^{k} d d^{c} & \left(v_{2}-v_{2}^{\varepsilon}\right) \wedge d d^{c} v_{3} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \\
& \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1} \\
& =\int_{\Omega} v_{1}^{k} d d^{c}\left(v_{2}-v_{2}^{\varepsilon}\right)
\end{aligned} d d^{c} v_{3} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1}
$$

$$
=\int_{\Omega}\left(v_{2}-v_{2}^{\varepsilon}\right) d d^{c} v_{1}^{k} \wedge d d^{c} v_{3} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1}
$$

For all k, v_{1}^{k} is locally uniformly bounded. Using Theorem 3.4 and the fact that $v_{2}^{\varepsilon} \downarrow v_{2}$, the last integral tends to 0 uniformly in k. It follows that

$$
\begin{aligned}
\int_{\Omega} \eta v_{1}^{k} d d^{c} v_{2} \wedge & \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1} \\
\geq & -\varepsilon+\int_{\Omega} \eta v_{1}^{k} d d^{c} v_{2}^{\varepsilon} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1} \geq \cdots \\
\geq & -(p-1) \varepsilon \\
& +\int_{\Omega} \eta v_{1}^{k} d d^{c} v_{2}^{\varepsilon} \wedge d d^{c} v_{3}^{\varepsilon_{1}} \wedge \cdots \wedge d d^{c} v_{m-p}^{\varepsilon_{m-p-2}} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

where $0<\varepsilon_{m-p-2}<\cdots<\varepsilon_{1}<\varepsilon$. Since the sequence $\left(v_{1}^{k}\right)$ is increasing almost everywhere to v_{1} with respect to $\operatorname{cap}_{m, T}$, we get

$$
\begin{aligned}
& \liminf _{k \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{k} d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1} \\
& \quad \geq-(p-1) \varepsilon+\int_{\Omega} \eta v_{1} d d^{c} v_{2}^{\varepsilon} \wedge \cdots \wedge d d^{c} v_{m-p}^{\varepsilon_{m-p-2}} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

By taking the limit when $\varepsilon \downarrow 0$, we obtain

$$
\begin{aligned}
& \liminf _{k \rightarrow+\infty} \int_{\Omega} \eta v_{1}^{k} d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1} \\
& \quad \geq \int_{\Omega} \eta v_{1} d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge T \wedge \beta^{n-m} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

Using (3.2), we obtain the following weak convergence:

$$
\begin{aligned}
\lim _{j \rightarrow+\infty} v_{1}^{j} T \wedge \beta^{n-m} \wedge d d^{c} v_{2}^{j} & \wedge \cdots \wedge d d^{c} v_{m-p}^{j} \wedge d d^{c} \varphi_{1} \\
& =v_{1} T \wedge \beta^{n-m} \wedge d d^{c} v_{2} \wedge \cdots \wedge d d^{c} v_{m-p} \wedge d d^{c} \varphi_{1}
\end{aligned}
$$

The same reason applied to φ_{2} gives the desired result.
In the following theorem we will prove the convergence of the sequence $\left(d d^{c} u_{k} \wedge T_{k} \wedge \beta^{n-m}\right)_{k}$ (here the current T is no longer fixed and is replaced by a sequence of currents that converges towards it). This result generalizes Elkhadhra's Theorem [9] proved for the limit case $m=n$.

Theorem 3.7. Let T and T_{k} be closed m-positive currents of bidimension (p, p) in Ω such that T_{k} converges weakly to T in Ω. Let u and u_{k} be locally uniformly bounded $m-$ sh functions in Ω such that $u_{k} \rightarrow u$ in $\operatorname{cap}_{m, T}$ on each $E \Subset \Omega$. Assume that

$$
\left\|T_{k} \wedge \beta^{n-m}\right\| \ll \operatorname{cap}_{m, T}
$$

on each $E \Subset \Omega$ uniformly as $k \rightarrow \infty$. Then

$$
d d^{c} u_{k} \wedge T_{k} \wedge \beta^{n-m} \rightarrow d d^{c} u \wedge T \wedge \beta^{n-m} \quad \text { weakly in } \Omega
$$

Proof. It suffices to prove that $u_{k} T_{k} \wedge \beta^{n-m} \rightarrow u T \wedge \beta^{n-m}$ weakly in Ω. For this, let φ be a test form on $\Omega, E=\operatorname{supp}(\varphi)$ and let K be a compact subset of Ω such that $E \subset K^{\circ}$. Since $\left\|T_{k} \wedge \beta^{n-m}\right\| \ll \operatorname{cap}_{m, T}$ on K uniformly for all k, we get that for every $\varepsilon>0$ there exists $\delta>0$ and $k_{0} \in \mathbb{N}$ such that for any Borel subset $K_{1} \subset K^{\circ}$ with $\operatorname{cap}_{m, T}\left(K_{1}\right)<\delta$, we have $\left\|T_{k} \wedge \beta^{n-m}\right\|\left(K_{1}\right)<\varepsilon$ uniformly for $k \geq$ k_{0}. Now, by Theorem 3.4, there exists an open set $\mathcal{O} \subset \Omega$ with $\operatorname{cap}_{m, T}(\mathcal{O})<\delta$ such that u is continuous on $\Omega \backslash \mathcal{O}$. Thus, we can write $u_{k}=v_{k}+w_{k}, u=v+$ w, where v is a continuous function in $\Omega, w=w_{k}=0$ on $\Omega \backslash \mathcal{O}$, for each k and all v_{k}, w_{k}, v, w are locally uniformly bounded on Ω by a constant independent of δ. It is easy to check that

$$
\begin{align*}
\mid \int_{\Omega}\left(u_{k} T_{k}\right. & -u T) \wedge \beta^{n-m} \wedge \varphi\left|\leq\left|\int_{\Omega}\left(v_{k}-v\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right|\right. \\
& +\left|\int_{\Omega} v\left(T_{k}-T\right) \wedge \beta^{n-m} \wedge \varphi\right|+\left|\int_{\Omega}\left(w_{k} T_{k}-w T\right) \wedge \beta^{n-m} \wedge \varphi\right| \tag{3.3}
\end{align*}
$$

As $v=u, v_{k}=u_{k}$ on $\Omega \backslash \mathcal{O}$, the first term in the right-hand side of inequality is bounded by

$$
\left|\int_{E \backslash \mathcal{O}}\left(u_{k}-u\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right|+\left|\int_{\mathcal{O} \cap E}\left(v_{k}-v\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right|
$$

As the functions u_{k}, u are locally uniformly bounded, there exist A, B independent of k and ε such that

$$
\begin{aligned}
& \left|\int_{E \backslash \mathcal{O}}\left(u_{k}-u\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{1} \int_{E \backslash \mathcal{O}}\left|u_{k}-u\right| T_{k} \wedge \beta^{p} \\
& =A_{1}\left(\int_{(E \backslash \mathcal{O}) \cap\left\{\left|u_{k}-u\right|<\varepsilon\right\}}\left|u_{k}-u\right| T_{k} \wedge \beta^{p}\right. \\
& \left.\quad+\int_{(E \backslash \mathcal{O}) \cap\left\{\left|u_{k}-u\right| \geq \varepsilon\right\}}\left|u_{k}-u\right| T_{k} \wedge \beta^{p}\right) \\
& \leq A_{1} \varepsilon| | T_{k} \wedge \beta^{n-m}| |(E)+A_{2}| | T_{k} \wedge \beta^{n-m}| |\left(E \cap\left\{\left|u_{k}-u\right| \geq \varepsilon\right\}\right)
\end{aligned}
$$

Now, using the fact that $T_{k} \wedge \beta^{n-m} \rightarrow T \wedge \beta^{n-m}$ weakly in Ω, we get that $\| T_{k} \wedge$ $\beta^{n-m} \|(E)$ is uniformly bounded.

On the other hand, since $\operatorname{cap}_{m, T}\left(E \cap\left\{\left|u_{k}-u\right| \geq \varepsilon\right\}\right) \rightarrow 0$ as $k \rightarrow \infty$, then for $k \geq k_{1}$ large enough we deduce that $\operatorname{cap}_{m, T}\left(E \cap\left\{\left|u_{k}-u\right| \geq \varepsilon\right\}\right)<\delta$. It follows that $\left\|T_{k} \wedge \beta^{n-m}\right\|\left(E \cap\left\{\left|u_{k}-u\right| \geq \varepsilon\right\}\right)<\varepsilon$ for all $k \geq \max \left(k_{0}, k_{1}\right)$. Hence we get that

$$
\lim _{k \rightarrow+\infty}\left|\int_{E \backslash \mathcal{O}}\left(u_{k}-u\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{3} \varepsilon
$$

Since v_{k}, v are locally uniformly bounded, there exists a constant A_{4} which does not depend on ε and k such that

$$
\left|\int_{\mathcal{O} \cap E}\left(v_{k}-v\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{4}\left\|T_{k} \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E)
$$

Since $\mathcal{O} \cap E \subset K$ and $\operatorname{cap}_{m, T}(\mathcal{O} \cap E)<\delta$, we have

$$
\left|\int_{\mathcal{O} \cap E}\left(v_{k}-v\right) T_{k} \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{4}\left\|T_{k} \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E)<A_{4} \varepsilon \text { for all } k \geq k_{0} .
$$

It follows that if $k \rightarrow+\infty$, then the first term in the right-hand side of inequality (3.3) is less than $\left(A_{3}+A_{4}\right) \varepsilon$, while the second one converges to zero because of the continuity of v and the fact that $T_{k} \wedge \beta^{n-m} \rightarrow T \wedge \beta^{n-m}$ weakly in Ω. For the third term, since w_{k}, w are locally uniformly bounded on Ω and are vanishing on $\Omega \backslash \mathcal{O}$, there exists a constant $A_{5}>0$ such that

$$
\left|\int_{\Omega}\left(w_{k} T_{k}-w T\right) \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{5}\left(\left\|T_{k} \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E)+\left\|T \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E)\right)
$$

As explained above, we have $\left\|T_{k} \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E)<\varepsilon$ for all $k \geq k_{0}$. On the other hand, since $\mathcal{O} \cap K^{\circ}$ is open and $T_{k} \wedge \beta^{n-m} \rightarrow T \wedge \beta^{n-m}$ as currents in Ω, we can easily prove that
$\left\|T \wedge \beta^{n-m}\right\|(\mathcal{O} \cap E) \leq\left\|T \wedge \beta^{n-m}\right\|\left(\mathcal{O} \cap K^{\circ}\right) \leq \lim _{k \rightarrow+\infty}\left\|T_{k} \wedge \beta^{n-m}\right\|\left(\mathcal{O} \cap K^{\circ}\right) \leq \varepsilon$.
The last inequality follows from the fact that $\operatorname{cap}_{m, T}\left(\mathcal{O} \cap K^{\circ}\right)<\delta$. Finally, by summing up the three terms in the right-hand side of inequality (3.3), we obtain the estimate

$$
\lim _{k \rightarrow+\infty}\left|\int_{\Omega}\left(u_{k} T_{k}-u T\right) \wedge \beta^{n-m} \wedge \varphi\right| \leq A_{6} \varepsilon
$$

where A_{6} is a constant not depending on ε. Since ε is arbitrary, the result follows.

4. Range of the operator $T \wedge \beta^{n-m} \wedge\left(d d^{c} .\right)^{m-p}$

Proposition 4.1. Let Ω be a bounded open subset of \mathbb{C}^{n} and let T be an m-positive closed current of bidimension $(n-p, n-p), p \leq m \leq n$, defined on Ω. Let also $u, v \in S H_{m}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\limsup _{\substack{\xi \rightarrow \rightarrow \Omega \\ \xi \in \operatorname{Supp} T}}|u(\xi)-v(\xi)|=0 .
$$

Then, for all $\delta>0$ and $0<k<1$, one has

$$
\begin{aligned}
& \operatorname{cap}_{m, T}(\{|u-v| \geq \delta\}) \leq \frac{[(m-p)!]^{2}}{(1-k)^{m-p} \delta^{m-p}} \\
& \times\left\|T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}-T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p}\right\|_{\{|u-v|>k \delta\}} .
\end{aligned}
$$

In particular, if $T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}=T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p}$, then $u=v$ almost everywhere with respect to $\operatorname{cap}_{m, T}$.

Proof. Let $w \in S H_{m}(\Omega,[0,1]), \delta>0$ and $\left.k \in\right] 0,1[$. Using Lemma 3 in [7] and the fact that

$$
\{|u-v| \geq \delta\} \subset\{|u-v+\delta k| \geq(1-k) \delta\}
$$

we can obtain

$$
\begin{aligned}
\int_{\{|u-v| \geq} & T \wedge \beta^{n-m} \wedge\left(d d^{c} w\right)^{m-p} \\
\leq & \frac{1}{(1-k)^{m-p} \delta^{m-p}} \int_{\{u+\delta \leq v\}}(v-u-k \delta)^{m-p} T \wedge \beta^{n-m} \wedge\left(d d^{c} w\right)^{m-p} \\
& +\frac{1}{(1-k)^{m-p} \delta^{m-p}} \int_{\{v+\delta \leq u\}}(u-v-k \delta)^{m-p} T \wedge \beta^{n-m} \wedge\left(d d^{c} w\right)^{m-p} \\
\leq & \frac{1}{(1-k)^{m-p} \delta^{m-p}} \int_{\{u+k \delta<v\}}(v-u-k \delta)^{m-p} T \wedge \beta^{n-m} \wedge\left(d d^{c} w\right)^{m-p} \\
& +\frac{1}{(1-k)^{m-p} \delta^{m-p}} \int_{\{v+k \delta<u\}}(u-v-k \delta)^{m-p} T \wedge \beta^{n-m} \wedge\left(d d^{c} w\right)^{m-p} \\
\leq & \frac{[(m-p)!]^{2}}{(1-k)^{m-p} \delta^{m-p}} \\
& \times \int_{\{|u-v|>k \delta\}}(1-w)\left(\chi_{\{u+k \delta<v\}}-\chi_{\{v+k \delta<u\}}\right) T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p} \\
& -\frac{[(m-p)!]^{2}}{(1-k)^{m-p} \delta^{m-p}} \\
& \times \int_{\{|u-v|>k \delta\}}(1-w)\left(\chi_{\{u+k \delta<v\}}-\chi_{\{v+k \delta<u\})} T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p}\right. \\
\leq & \frac{[(m-p)!]^{2}}{(1-k)^{m-p} \delta^{m-p}} \\
& \times\left\|T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}-T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p}\right\|_{\{|u-v|>k \delta\}}
\end{aligned}
$$

The result follows.
Corollary 4.2. Let Ω be a bounded open subset of \mathbb{C}^{n} and let T be an m positive closed current of bidimension $(n-p, n-p)(p \leq m \leq n)$ defined on Ω and $u, u_{j} \in S H_{m}(\Omega) \cap L^{\infty}(\Omega)$. Assume that:
i) $\underset{\substack{\xi \rightarrow \partial \Omega \\ \xi \in \operatorname{Supp} T}}{\limsup }\left|u_{j}(\xi)-u(\xi)\right|=0$ uniformly on j.
ii) For all $E \Subset \Omega$, one has

$$
\left\|T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p}-T \wedge \beta^{n-m} \wedge\left(d d^{c} u\right)^{m-p}\right\|_{E} \rightarrow 0
$$

Then u_{j} converges to u with respect to capacity $\operatorname{cap}_{m, T}$ on Ω.
Throughout this section we denote by μ a positive measure on a bounded open set Ω, by λ, the Lebesgue measure and by T, an m-positive closed current
of bidimension $(n-p, n-p)(p \leq m \leq n)$. We will solve the following Hessian equation on the set of m-subharmonic functions

$$
T \wedge \beta^{n-m} \wedge\left(d d^{c} .\right)^{m-p}=\mu
$$

Proof of Theorem 1.1. Let $A>0$ such that for all $z \in \bar{\Omega}$, one has $A>|z|$. Take $c>0$ such that $c \geq|v(z)|+\left|u_{1}(w)\right|+1$ for all $z \in \Omega$ and $w \in \partial \Omega$. Using Lemma 3 from [7] and the hypothesis 1), we get

$$
\begin{aligned}
\int_{\left\{u_{j}<v-c\right\}} & \left(1-\frac{|z|^{2}}{A^{2}}\right) T \wedge \beta^{n-m} \wedge\left(d d^{c} u_{j}\right)^{m-p} \\
\geq & \int_{\left\{u_{j}<v-c\right\}}\left(1-\frac{|z|^{2}}{A^{2}}\right) T \wedge \beta^{n-m} \wedge\left(d d^{c} v\right)^{m-p} \\
& +\frac{1}{[(m-p)!]^{2} A^{2(m-p)}} \int_{\left\{u_{j}<v-c\right\}}\left(v-c-u_{j}\right)^{m-p} T \wedge \beta^{n-p} \\
\geq & \int_{\left\{u_{j}<v-c\right\}}\left(1-\frac{|z|^{2}}{A^{2}}\right) d \mu \\
& +\frac{1}{\left([(m-p)!]^{2} A^{2(m-p)}\right.} \int_{\left\{u_{j}<v-c\right\}}\left(v-c-u_{j}\right)^{m-p} T \wedge \beta^{n-p}
\end{aligned}
$$

As $\left\|\mu_{j}-\mu\right\|_{\Omega} \rightarrow 0$, then

$$
\begin{aligned}
0 & \geq \liminf _{j \rightarrow+\infty} \int_{\left\{u_{j}<v-c\right\}}\left(v-c-u_{j}\right)^{m-p} T \wedge \beta^{n-p} \\
& \geq \int_{\Omega} \liminf _{j \rightarrow+\infty}\left(\chi_{\left\{u_{j}<v-c\right\}}\left(v-c-u_{j}\right)^{m-p}\right) T \wedge \beta^{n-p} \\
& \geq \int_{\Omega} \chi_{\{\limsup }^{j \rightarrow+\infty} \\
& \left.\geq u_{j}<v-c\right\} \\
& \left.\chi_{\left\{\limsup _{j \rightarrow+\infty} u_{j}<v-c\right\}}\left(v-c-\limsup _{j \rightarrow+\infty} u_{j}\right)^{m-p}\left|v-c-u_{j}\right|\right)^{m-p} T \wedge \beta^{n-p}
\end{aligned}
$$

It follows that $\lim \sup _{j \rightarrow+\infty} u_{j} \geq v-c$ for $\left\|T \wedge \beta^{n-m}\right\|$-almost everywhere. Thus,

$$
\limsup _{j \rightarrow+\infty} u_{j} \neq-\infty
$$

If we take

$$
A:=\bigcup_{j}\left(\sup \left\{u_{j}, u_{j+1}, \ldots\right\}<\sup ^{\star}\left\{u_{j}, u_{j+1}, \ldots\right\}\right)
$$

after using [2], we can see that there exists $g \in S H_{m}(\Omega)$ such that

$$
\sup \left\{u_{j}, u_{j+1}, \ldots\right\}=\sup ^{\star}\left\{u_{j}, u_{j+1}, \ldots\right\} \downarrow \limsup _{j \rightarrow+\infty} u_{j}=g \quad \text { on } \Omega \backslash A
$$

As $\operatorname{cap}_{m, T}(A)=0$ and the $\left\|T \wedge \beta^{n-m}\right\|$-negligible set are λ-negilgeable, we get that $g \geq v-c$ almost everywhere. It follows that g is bounded on Ω. Using

Theorem 3.5, it suffices to prove that u_{j} converges to g with respect to capacity $\operatorname{cap}_{m, T}$. Letting $E \subset \subset \Omega$ and $\delta>0$, one has

$$
\begin{aligned}
\operatorname{cap}_{m, T}\left(E \cap\left\{\left|g-u_{j}\right| \geq \delta\right\}\right) & \geq \operatorname{cap}_{m, T}\left(E \cap\left\{\left|g-\sup \left\{u_{j}, u_{j+1}, \ldots\right\}\right| \geq \frac{\delta}{2}\right\}\right) \\
& +\operatorname{cap}_{m, T}\left(\left\{\left|\sup \left\{u_{j}, u_{j+1}, \ldots\right\}-u_{j}\right| \geq \frac{\delta}{2}\right\}\right)
\end{aligned}
$$

By applying Theorem 3.4 and Dini's theorem on g, it is easy to check that the sequence $\sup \left\{u_{j}, u_{j+1}, \ldots\right\} \downarrow g$ uniformly on E outside a set of small capacity $\operatorname{cap}_{m, T}$. It follows that

$$
\operatorname{cap}_{m, T}\left(E \cap\left\{\left|g-\sup \left\{u_{j}, u_{j+1}, \ldots\right\}\right| \geq \frac{\delta}{2}\right\}\right)
$$

tends to 0 when j goes to $+\infty$.
Now, let us prove that

$$
B:=\left\{\left|\sup \left\{u_{j}, u_{j+1}, \ldots\right\}-u_{j}\right| \geq \frac{\delta}{2}\right\} \subset \bigcup_{l=0}^{+\infty}\left\{\left|u_{j+l+1}-u_{j+l}\right| \geq \frac{\delta}{2^{l+j+2}}\right\}
$$

We can assume that $[(m-p)!]^{2}\left\|\mu_{j}-\mu\right\| \leq \frac{1}{2^{(m-p+1) j}}$. So, by Proposition 4.1, one has for all $\delta>0$,

$$
\begin{aligned}
\operatorname{cap}_{m, T}\left\{\left|u_{j+1}-u_{j}\right|\right. & >\delta\} \leq \frac{(m-p)!^{2}}{\delta^{m-p}}\left\|\mu_{j+1}-\mu_{j}\right\| \\
& \leq \frac{(m-p)!^{2}}{\delta^{m-p}}\left(\left\|\mu_{j+1}-\mu\right\|_{\Omega}+\left\|\mu-\mu_{j}\right\|_{\Omega}\right) \leq \frac{2}{\delta^{m-p} 2^{(m-p+1) j}}
\end{aligned}
$$

and we deduce that

$$
\begin{aligned}
& \operatorname{cap}_{m, T}\left(\left\{\left|\sup \left\{u_{j}, u_{j+1}, \ldots\right\}-u_{j}\right| \geq \frac{\delta}{2}\right\}\right) \\
& \leq \sum_{l=0}^{+\infty} \operatorname{cap}_{m, T}\left\{\left|u_{j+l+1}-u_{j+l}\right| \geq \frac{\delta}{2^{l+j+2}}\right\} \leq \frac{4^{m-p}}{\delta^{m-p} 2^{j}}
\end{aligned}
$$

Hence the sequence u_{j} converges to g with respect to capacity cap ${ }_{m, T}$ and, by Theorem 3.5, we get that the sequence $\left(d d^{c} u_{j}\right)^{m-p} \wedge T \wedge \beta^{n-m}$ converges weakly to $\left(d d^{c} g\right)^{m-p} \wedge T \wedge \beta^{n-m}$.

Remark 4.3. Without the first hypothesis, we cannot have the existence of the solution to the equation $T \wedge \beta^{n-m} \wedge\left(d d^{c} .\right)^{m-p}=\mu$ even in the trivial case $T=$ 1 and $m=n$. In fact, using [5], there exists $f \in L^{1}(\Omega)$ such that the equation $\left(d d^{c} u\right)^{n}=f d \lambda$ has no solution in $\operatorname{PSH}(\Omega) \cap L^{\infty}(\Omega)$.

Acknowledgment. We would like to thank Prof. Sławomir Dinew for helpful comments on an earlier version of this paper.

Authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. DSR-2021-0303134.

References

[1] E. Bedford and B.A.Taylor, A new capacity for plurisubharmonic functions, Acta. Math. 149 (1982), 1-40.
[2] Z. Błocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier 55 (2005), 1735-1756.
[3] U. Cegrell, Discontinuitee de l'operateur de Monge-Ampere complexe, C. R. Acad. Sci.Paris Ser. I Math. 296 (1983), 869-871.
[4] U. Cegrell, Capacities in Complex Analysis, Braunschwerg Wiesbaden Friedr. Vieweg et Sohn, 1988.
[5] U. Cegrell and A. Sadullaev, Approximation of plurisubharmonic functions and the Dirichlet problem for the complex Monge-Ampere operator, Math. Scand. 71 (1993), 62-68.
[6] K. Dabbek and F. Elkhadhra, Capacité associée à un courant positif fermé, Documenta Math. 11 (2006), 469-486 (French).
[7] A. Dhouib and F. Elkhadhr, m-Potential theory associated to a positive closed current in the class of m-sh functions, Complex Var. Elliptic Equ. 61 (2016), 1-28.
[8] S. Dinew and S. Kolodziej, A priori estimates for complex Hessian equations, Anal. PDE. 7 (2014), 227-244.
[9] F. Elkhadhra, Lelong-Demailly numbers in terms of capacity and weak convergence for closed positive currents, Acta Math. Scientia 33 (2013), 1652-1666.
[10] L.H. Chinh, Equations Hessiennes complexes, Thèse de l'Université Toulouse III (UT3 Paul Sabatier), 2012. Available from: http://thesesups.ups-tlse.fr/ 1961/1/2013TOU30154.pdf.
[11] L.H. Chinh, A variational approach to complex Hessian equations in \mathbb{C}^{n}, J. Math. Anal. Appl. 431 (2015), 228-259.
[12] P. Lelong, Discontinuitee et annulation de lóperateur de Monge-Ampère complexe. In: Lecture Notes in Math., Springer-Verlag, Berlin, 1028, 1983, 219-224 (French).
[13] A.S. Sadullaev and B.I. Abdullaev, Potential theory in the class of msubharmonic functions, Tr. Mat. Inst. Steklova 279 (2012), 166-192.
[14] Y. Xing, continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457-467.

Received October 15, 2020, revised December 21, 2020.
Jawhar Hbil,
Department of Mathematics, College of science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia,
E-mail: jmhbil@ju.edu.sa
Mohamed Zaway,
Department of Mathematics, Faculty of Sciences and Humanities in Ad-Dawadmi, Shaqra University, 11911, Saudi Arabia.
Irescomath Laboratory, Gabes University, 6072 Zrig Gabes, Tunisia,
E-mail: m_zaway@su.edu.sa

Слабкий розв'язок комплексного рівняння гессіана, пов'язаного з m-позитивним замкнутим потоком

Jawhar Hbil and Mohamed Zaway
Метою даної статті є вивчення існування розв'язку комплексного рівняння гессіана, пов'язаного з m-позитивним замкнутим потоком T. Даємо достатню умову на T і міру μ, так що рівняння $T \wedge \beta^{n-m} \wedge$ $\left(d d^{c} .\right)^{m-p}=\mu$ має розв'язок на множині m-субгармонічних функцій. Для цього встановлюємо зв'язок між збіжністю відносно $с а p_{m, T}$ послідовності m-субгармонічних функцій та слабкою збіжністю асоційованої гессіанової міри.

Ключові слова: m-позитивний замкнутий потік, m-субгармонічна функція, ємність, оператор гессіана

[^0]: (C) Jawhar Hbil and Mohamed Zaway, 2022

