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Multidimensional Submanifolds with Metric
of Revolution in Hyperbolic Space
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In the paper, the structure of submanifolds of low codimension with in-
duced metric of revolution in a hyperbolic space is considered. The condition
on extrinsic properties of such submanifolds to be submanifolds of revolu-
tion is found. This paper is a generalization of the result for submanifolds
in Euclidean space.
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In Euclidean space E2, a 2-dimensional surface of revolution of constant Gaus-
sian curvature admits a standard coordinate system (u!, u?) such that the metric
of this surface is the metric of revolution

ds* = (du1)2 + ¢*(ul) (du2)2.

On the other hand, from the fact that the induced metric on F? C E3 is a
metric of revolution it does not follow that F? is a surface of revolution. There
is a locally isometric embedding F? in E? such that the geodesic line u?> = 0
mapped onto a space curve with torsion is not equal to zero at any point. The
following example can be constructed by using the Cauchy—Kowalewski theorem.

Therefore it is interesting to find the condition when a multidimensional sub-
manifold F* with induced metric of revolution in a space of constant curvature
MP is a submanifold of revolution.

A.A. Borisenko in [4] presented this condition for submanifolds in Euclidean
space. Let F! be a submanifold of low codimension in Euclidean space with
induced metric of revolution of constant-sign sectional curvature. If the geodesic
coordinate lines on F' are the lines of curvature, then F' is a submanifold of
revolution.

In paper [11], it was considered a classification of submanifolds in the Eu-
clidean space in terms of the indicatrix of normal curvature up to projective
transformation. In [1] it was studied an isometric immersions of the Lobachevsky
plane into 4-dimensional Euclidean space with flat normal connection.

In the present paper, we consider an isometric immersion of submanifolds F"
of low codimension with induced metric of revolution in hyperbolic space H'*P.
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We consider 3 cases, when the extrinsic sectional curvature of F! is negative, zero,
and positive.

The similar result is true for submanifolds of low codimension with induced
metric of revolution in a spherical space S'*P.

1. Main definitions

Let E7 be a pseudo Euclidean space of signature (1,n). The scalar product
of vectors X (2%, !,... ") and Y (y°,9%,...,y") in ET is

(X,Y) = —2%° +alyl + . 4 2™y (1.1)
Consider a sheet of a hyperboloid in E}
H" = {X(2%2', ..., 2")(X, X) = —1,20 > 0}.

The pseudo Euclidean metric induces the metric of constant negative curvature
—1on H™.

Definition 1.1. A multidimensional Riemannian metric on a manifold F* is
called a metric of revolution if there exists a regular coordinate system such that
this Riemannian metric has the form

ds® = (du1)2 + ¢*(ul)do?, (1.2)

where p(ul) > 0 is a regular function, do? is a Riemannian metric of constant
sectional curvature.

Definition 1.2. A submanifold F! in a hyperbolic space H*P Eiﬂ’ is
called a submanifold of revolution if the radius vector of F! equals

2% = x(u')
! =y(ul

r(ul, ,ul) =22 = p(ut)p'(u?,... u) , (1.3)
(2P = p(ul)p P (W, )

where
PP+t = 1,

() 4+ () o (071) =1,

and do? = (d,ol)2 +- 4 (dpl+p—1)2 is a Riemannian metric of constant sectional
curvature.
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The curve (u') with the radius vector

20 = x(u')
) = ot = ()
z? = p(u')

lies on the hyperbolic plane H? C E? and u! is the arc-length parameter of ~.
The submanifold F! is obtained by the rotation of the curve y(u') along the
submanifold F'~1 ¢ §1+P=2 in Ei+p. The radius vector of FI=1 is

p(uz,...,ul) = (0,0,p1(u2,...,ul),...,pl+p_1(u2,...,ul)) )

The submanifold F*~! has the intrinsic Riemannian metric do? of constant sec-
tional curvature.

From (1.3), it is easy to check that the submanifold of revolution F! admits
the metric of revolution (1.2).

Consider the reverse problem, when a multidimensional submanifold F* with
induced metric of revolution (1.2) of constant-sign sectional curvature is a sub-
manifold of revolution in H'*P.

Definition 1.3. A line v ¢ F' C Eiﬂ’ is called a line of curvature of a
submanifold F! if for any normal n from the normal space NF! the tangent
vector 7/ is a principal direction of the second fundamental form with respect to
the normal n.

Definition 1.4. A direction 7 from the tangent space TQFl at a point Q) of a
submanifold F! in Riemannian manifold M'*? is called asymptotic if B, (1,7) =
0 for any normal n € NgF ! at this point, where B,, is the second fundamental
form relative to the normal n.

2. Submanifolds of negative extrinsic sectional curvature in hy-
perbolic space

Lemma 2.1. Let F! be a submanifold in hyperbolic space H*~1 with induced
metric of revolution

ds® = (du!)® + ¢ (u') do?, (2.1)
where p(u') > 0 is a regular function, do? is a Riemannian metric of constant
sectional curvature. Let F' have a negative extrinsic sectional curvature. Then
1.  Ifdo? is a flat metric, then ¢" — o >0, (¢')? — p? > 0.

2. If do? is the metric of unit sphere, then ¢" — o >0, (p')2 —p?> > 1, ¢’ > 1
when u! > 0, and p(0) =0, ¢'(0) = 1.

3. If do? is the metric of hyperbolic space of curvature —1, then ¢" — o > 0,
(@) —¢? > 1.
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Proof. 1. Consider the case when do? is a flat metric. Then the metric of
revolution (2.1) is

2
i = () ) (@) 4ok (ad)”). 22
In this case, the nonzero Christoffel symbols of the metric ds® equal
The intrinsic sectional curvatures of F' along coordinate 2-dimensional planes
IL;; are equal
" (¥")?

K(Ily;) = o K(IL;;) = T

From the Gauss equation, it follows that the extrinsic and intrinsic section
curvatures of the submanifold F! in H?~ satisfy

ij=2,...,L

Kext = King + 1. (2.4)
Then the extrinsic sectional curvatures of F! equal

" \2 2
- —()? + -
Koa(lly) = =52, Koallly) = —ELEE 2

oL

Since F! has negative extrinsic sectional curvature, it follows that

' —9>0, (¢)-p*>0.

2. The case, when do? is a metric of constant sectional curvature 1. The
metric (2.1) has the form

4 ((du2)2 +--+ (dul)2>

2 = (du')? 2(ut .
ds? = (du')” + ¢*( )(1+(u2)2+...+(ul)2)2

By direct computations, we get

1 1_ /N2 o
K(Hlj)z—%7 K(Hz‘j):é;”, ihj=2,...,1

From the Gauss equation, we obtain the extrinsic sectional curvatures of F*,

1— ()2 + ¢?
2 b

"o
Kexi(Il1) = -2 " ? Kext(I1;5) = -

ii=2,...,1

By the assumption, the metric of F! is regular. From the singularity of polar
coordinate system, it follows that ¢(0) = 0, ¢’(0) = 1. Since F' has a negative
extrinsic curvature, then for u!' > 0 we get

¢ —0>0, (¢)P-¢*>1 (2.5)
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3. Consider the case, when do? is a metric of constant sectional curvature
—1. The metric (2.1) has the form

4 ((du2)2 +ooF (dul)z)
(1= @22 = = @)

ds* = (du1)2 + 2 (ul)

Then we get
1 AV
% —1-(¥)
K(Hlj):_;a K(HZJ):Tv 27]227' 7l
The extrinsic sectional curvatures of F! equal
"o —1— N2 + 2
Kext(Hlj) == _SD © (70) Kext(Hij) - (222) Ld ) 1,] = 27° 7l

Since F! has a negative extrinsic curvature, it follows that
" AV 2
¢ —e>0, (¢) —¢">-L O

Let r = r(u', ..., u!) be a radius vector of the submanifold F' in a hyperbolic
space H?~1 C Efl_l. Denote dr/0u’ by r; and denote 9%r/ (Ouiﬁuj) by 7.

Lemma 2.2. Let F' be a C3-reqular submanifold in a hyperbolic space
H2=1 ¢ E%l_l with the induced metric of revolution of negative extrinsic sectional
curvature. If the coordinate lines u' are the lines of curvature of the submanifold
Fl, then the rank of the map

Ld - Ld (2.6)

=
I
%
(S
=

s equal to one.

Proof. Let bf‘j be the coefficients of the second fundamental forms F! with

respect to the orthogonal basis of normals n®, a =0,...,l — 1. Since F' locates
on the hyperbolic space H*~! C E%l_l, it follow that n® = r. Then

b(l)l = —<r11,n0> = (r1,r1) = 1.
1

Since the coordinate lines u
follows that

are the lines of curvature of the submanifold F*, it

%j:07 j:27"'>la O[:O,...,l—l.

Now we calculate the Jacobi matrix of the map (2.6):
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/
s b o
Ty = Ty

() = ¢?

(@/)2_8027“”, j:2,...,l.

From the Weingarten equations
rij = Ffjrk + Z bin®

for F! ¢ H*' ¢ B! (see [7, §64]) and (2.3), we have
-1 ,
11 :r—l—Zb‘f‘lno‘, T = grj, ji=2,...,1
¥

Hence we get

S ) L e - _Z
(@) - (92— ¢? 3/2 e RV It

Fi=0, j=2...,L

—=—=b01n" #0,

It follows that the rank of the Jacobi matrix of the map (2.6) is equal to 1 and 7
depends only on the variable u!, i.e., 7 = ®(u'). O

Theorem 2.3. Let F! be a C3-regular submanifold in a hyperbolic space
H-1 ¢ E%l_l with the induced metric of revolution of negative extrinsic sectional
curvature

ds? = (du1)2 + ¢*(ul) do?, (2.7)

where o(u') is a regular positive function and do? is a Riemannian metric of
constant sectional curvature. If the coordinate lines u' are the lines of curvature
of the submanifold F', then F' is a submanifold of revolution.

Proof. 1. do? is a flat metric. Consider an ordinary differential equation

W;OQ —2 (<p’)(p2 2 o) (28)

with respect to the vector function r. The solution of this equation is

O AR N ARV (1 ) ek e O OO
r(u',...,u)=—p( )/0 200 O(t)dt + o(u”)C(u®, ... ,u).

Consider the constant A\ = W, and rewrite r in the following way:

ol Y ERVICIO R0
= )(A@(O) /O 200 @(t)dt)
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We set

V(1) - 2(t) (I)(t)dt) , (2.10)

(0), (2.11)
Y'(0) = 0. (2.12)
So the radius vector r of the submanifold F' is
r = bul) + pul)p(ud, .. ul).

The vectors tangent to the coordinate lines of F! have the form

ri =1 (ul) + ¢ (uh)p(u?, ... ),
T = <p(ul)pj(uQ,...,ul)7 j=2,...,1L

Since F' has the induced metric of revolution (2.2), then

g = (W, 0) + 200, p) + (&) {p.p) = 1, (2.13)

915 = @', ps) + ¢’ {p, pj) = 0, (2.14)

gij = P pi,pj) = 260, i, j=2,...,1 (2.15)

Consider equation (2.13) when u! = 0. Using (2.12), we get that for any
u27 N 7ul7

1
(p,p) = W

Then the submanifold F'~! with the radius vector p = p(u?,...,u!) belongs to a

sphere S?%l_g C E?72 of radius R = 1/¢'(0). From (2.15), it follows that F!~!
has the flat intrinsic metric.

Let us show that F'~! does not belong to the Euclidean space E*~3. Assume
the converse. Then F'~! is a submanifold on a sphere 512_{_4 C E?=3. From the
Gauss equation, the extrinsic curvatures of the F'~1 are obtained

Kext(Flil) = _(90,(0))2'

It is known that if a submanifold F™ of a Riemannian space M "P has a negative
extrinsic sectional curvature, then p > m — 1 [5, Theorem 3.2.2]. In our case,
m=1—1, M™P = §2=4 We get that the codimension of F'~! equals p =1 —
3 = m — 2. From this contradiction one can conclude that F'~! belongs to the
sphere 512%1_3 c E*-2
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Since (r,7;) = 0, then (¢, p;) = 0. If u! =0, then from (2.11) it follows that
(©(0), pj) = 0.

From (2.14), we get that (¢', p;) = 0. Differentiating this equation with respect
to u!, we have

<¢”7pj> = 07 <¢H/7 Pj> = 07 <¢(4)7pj> = 07 <. (216)
Consider (2.16) at the point u! = 0. From (2.10), we obtain
¥ ™(0) € Lin{®(0), ®'(0), ®"(0), ..., *D(0)}.

We get that for all u?, ..., u! the following is true:

<q),(0>7pj> =0, <CI)H(O)“0]-> =0, <(I)m(0)7pj> =0,... (217)
These equations are true for all u! and we can rewrite (2.17) in the following way:
(@' (), p) = colwd), (@"(u)),p) = er(ul),  (@”(u)),p) = calul),.... (2.18)

From (2.8), it follows that (®(u!), ®(u')) = —1. Consider the subspace L in
E?~1 such that
L = Lin{®'(u!), ®"(u!), ®" (ul),...}.

If dimZ = 3, then from (2.18) it follows that the submanifold F'~! belongs to
the Euclidean space E?~3. We have proved before that this is impossible. Then
dimL = 2 for any point on the curve ®(u'). Thus the curve ®(u') belongs to the
plane F} ¢ E7! and the submanifold F*~! is orthogonal to ®(u").

Choose the orthogonal coordinate system such that the plane E} coincides
with the plane z°Oz!, where O is the origin of coordinates. Then ®(u!) =
(p(ul), v(uh),0,...,0.). Using (2.9), we obtain the radius vector of the subman-
ifold F!,

(20 = x(u')
o = (u)
r=1{a% = ol (e, ..

pr — Lp(ul)pHp*l(uQ, . ul)

It follows that the submanifold F' is a submanifold of revolution. This completes
the proof of Theorem 2.3, part 1.

2. do? is a metric of constant sectional curvature 1.

Consider u} such that u! > u} > 0. Assume that u} = 0. Every subman-
ifold u* = u} belongs to the sphere 512%1—3 C E%2 where R = 1/¢/(u}). From
Lemma 2.1, part 2, we get that ¢'(ul) > 1, ¢”(u!) > 1 for u! > 0. Therefore
F! lies inside the sphere S of radius 1. Moreover, this sphere S is the supporting
sphere of F! at the point «' = 0. The normal n of the sphere S coincides with the
normal of F! at the point u' = 0 in H%~1. It follows that the second form of F*
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with respect to the normal n is positive defined. Then there are no asymptotic
direction at the point u' = 0. On the other hand, F* has a negative extrinsic
sectional curvature in H?~!. Then F' has 2!~! asymptotic directions at every
point [3, Lemma 3.2.1]. From this contradiction we get uj > 0.

The submanifold F!~! with the radius vector p has the intrinsic metric of
constant curvature 1 and lies inside a sphere S%_B C E%72 of radius R =
1/¢'(u}). The extrinsic curvature Kexi(F!™!) of the submanifold F'~1 is

Ko (F™Y) =1 - (¢ (u}))” < 0.

By the same argument as in the part 1, the curve ®(u!) belongs to the plane
E}l ¢ E?7! and ®(u') is orthogonal to F'~'.

Choose the orthogonal coordinate system such that the plane E} coincides
with the plane 2°0x'. Thus we obtain that the submanifold F! is a submanifold
of revolution.

3. do? is a metric of constant sectional curvature K, = —1. In this case, the
proof is similar to that of the part 1. O

3. Submanifolds of zero extrinsic sectional curvature in hyper-
bolic space

Let L' be a hypersurface of constant curvature in H'*!' and F'~! be a sub-
manifold of L!. Through every point of F!~! construct the geodesics v tangent
to the normal of L! in H"*'. We get the surface F' with one-dimensional gener-
ator over the submanifold F'=1 in H*1. Consider H'*! in a Cayley-Klein model
inside the unit ball. Then

1) If all geodesics v intersect in the fixed point inside the ball, then F' is a
cone.

2) If all geodesics «y intersect in the fixed point on the absolute of the model,
then F! is called an asymptotic cone.

3) If all geodesics v do not intersect each other either inside the ball or on the
absolute, then F' is a cylinder with one-dimensional generator.

Theorem 3.1. Suppose F' is a reqular hypersurface in hyperbolic space H* 1
with the induced metric of revolution of zero extrinsic sectional curvature

ds? = (du1)2 + ¢*(ul) do?, (3.1)

where p(u') > 0 is a reqular function, do? is a Riemannian metric of constant
sectional curvature. Let the coordinate lines u' be the lines of curvature of the
submanifold F'.

1. If do? is a metric of constant sectional curvature -1, then F' is a cylin-
der with one-dimensional generator over a local isometric immersion of a
domain of hyperbolic space H' ™' into H'.
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2. Ifdo? is a metric of constant sectional curvature 1, then F' is a cone with
one-dimensional generator over a local isometric immersion of a domain of
the unit sphere S'=1 into the unit sphere S' C H!*1,

3. Ifdo? is a metric of constant sectional curvature 0, then F' is an asymptotic
cone with one-dimensional generator over a local isometric immersion of a
domain of Euclidean space E'™1 into the horosphere E* ¢ H'*!,

Proof. Consider the definition of null-index (see [2]).

Definition 3.2. The extrinsic null-index p(Q) of a point @ of a submanifold
F' in the Riemannian manifold M'*P is the maximal dimension of a subspace
L(Q) of the tangent space TgF' such that B,z = 0 for any vector x € L(Q) and
any normal n € NgF ! at this point, where B, is the linear transformation in
TQFl corresponding to the second fundamental form relative to the normal n.

Chern and Kuiper (see [6]) proved that the null-index of a submanifold F!
M™P with zero extrinsic curvature satisfies the inequality

p=>1l—p.

In our case, we get that the null-index of F! in H*! equals 1(Q) =1 — 1 for any
point @ of submanifold F'. Therefore the nullity foliation L(Q) is integrable and
the leaves SL(Q) of this foliation are totally geodesic submanifolds of constant
curvature —1 in H*1. A normal n is constant along the leaves (see [8]).

Let us consider two cases.

1) The totally geodesic leaves SL(u') C F! are orthogonal to the coordinate
lines u!.

Since F! has the induced metric of revolution (3.1), it follows that the leaves
of foliation SL(u') have the intrinsic metric of sectional curvature K, /p?(ul),
where K, is a constant of curvature of metric do?. Since SL(u') has a constant
curvature —1, then op(u') should be a constant function. The extrinsic sectional

curvature of F! ¢ H'! along the coordinate plane IT;; equals

(PH
Kext(Hlj) - —; + 1.

If p(u') is constant, then F' has non zero extrinsic sectional curvature. From
this contradiction, we get that case 1) is impossible.

2) The leaves SL(Q) of foliation contain the coordinate lines u'.
2.1) Let do? be a Riemannian metric of constant negative curvature —1. Since
the submanifold F' has a zero extrinsic curvature, it follows

¢ —=0, (¢)?-¢*=-1.
Then ¢ = cosh(u!) and ¢(u') > 0 for all u' > 0. The metric of F! has the form

ds* = (alul)2 + cosh?(ut) do. (3.2)



Multidimensional Submanifolds with Metric of Revolution 279

1....,u') be a radius vector of F'. Consider the map

Let r = r(u
7= —sinhu' r + coshu' ry. (3.3)
Calculate the rank of this map

71 = coshu! (—=r + r11), 7; = —sinhu! 7j + coshu! ry;. (3.4)

Let n be a normal to F' in H'*! and bi; be the coefficients of the second fundamen-
tal form. The coordinate lines u! are the lines of a curvature of the submanifold
F'. then bi; =0, j =2,...,1. Since the lines u! belong to the leaves SL(Q), it
follows that b1 = 0.

From the Weingarten equations for F! ¢ H'*! (see [7, §64]) we obtain

k k
ri = FHT‘k 4+ 7+ b1y n, Ty = Fljrk + blj n.

By a direct computation, we have

: 1
ko 1 <_jsmhu B S
]._‘11 —O, Fl] —0, le _51 m, k—l,...,l, j,l—2,...,l.
Then
sinh !

ri=r, Ty = (3.5)

= coshaul ¥
Substitute (3.5) into (3.4). We get that the rank of the map (3.3) is equal
to 0. It follows that 7 is a constant vector and (7,7) = 1. Choose in Ei™ the
orthogonal coordinate system such that the axis 2!*! coincides with 7, so 7 =
(0,0, ey 1) = €]+1-
Consider the differential equation

—sinhu! r + coshu! ry = €l41-
Solving this equation with respect to the vector function r, we get
r = sinhu'e; 1 + coshu'p(u?, ... ul), (3.6)
where p = p(u?,...,u') is a vector in ETL.
The submanifold F! ¢ H'*! with the radius vector r has the metric (3.2).

Consider the equations

(r,r) = sinh? u! + coshu! sinhu' (e 1, p) + cosh? ul (p, p) = —1. (3.7)

(r1,71) = cosh? u' + coshu! sinhu' (e 41, p) + sinh? u' (p, p) = 1.
Subtracting (3.7) from (3.8) yields
1+ (sinh*u' — cosh®u') (p, p) = 2.

Thus we obtain that (p, p) = —1 for any u!.
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From (r,r;) = 0, we get

coshu! sinhu! + sinh? u' (e, 1, p) + cosh? u'(eg 1, p) + coshu' sinhu! (p, p) = 0;

(sinh? u! + cosh? u') (e141, p) = 0.

From this equation we get that p!™'(u?,..., u!) = 0 for any u'.
Therefore, from (3.6) we obtain the radius vector of F!,

29 = coshu'p®(u?, ... ul)

x! = coshulp!(u?,... ul)
r= cels

z! = coshulpt(u?, ... ub)

#*1 = sinhu!

Since F! has the metric of revolution (3.2), then
ri, 1) = cosh® ul (p;, p;) = cosh®u! o5, 4,5 =2,...,1.
(ri,rj) Pis Pj J

where o0;; are the coefficients of the metric do?.

It follows that the intersection of F! with the hyperbolic space H' orthogonal
to coordinate lines u! at u' = 0 is a submanifold F'~! with the radius vector p =
p(u?,...,u!) and F'=! has the intrinsic metric of constant sectional curvature —1.
The coordinate lines u! of F! coincide with the geodesic lines of H**! that are
orthogonal to the subspace H' containing F*~!. We obtain that the submanifold
F'in H™1 is a cylinder with one-dimensional generator over F'~1.

2.2) Let do? be a metric of constant sectional curvature 1.

Since the submanifold F' has a zero extrinsic curvature, it follows

¢ —p=0, (¢)P-¢*=1

From the solution of these differential equations, we get ¢ = sinh(u!) and p(u!) >
0 for all u' > 0. Thus the metric of the submanifold F! has the form

((du2)2 + -+ (dul)Q)

ds? = (dul)Z + 4sinh? u! 5 (3.9)
(4 @2+ (h?)
Similarly to the part 2.1), consider the map
7 = coshu! r —sinhu! 7.
The rank of this map is equal to 0. Then 7 is a constant vector and (7, 7) = —1.
Choose in Ei“ an orthogonal coordinate system such that the axis 20 coincides

with 7, so 7 = (1,0,...,0) = eo.
From the differential equation

coshu! r — sinhu' 1 = ey,
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we get that the radius vector of F! is

r = coshuleg + sinhu'p(u?, ... ul), (3.10)

where p = p(u?,...,u) is a vector in E{T1,
The submanifold F! ¢ H'*! with the radius vector  has the metric (3.9). In
a similar way, from (r,r) = —1 and (r1,71) = 1 we obtain that (p, p) = 1 for any

ul.

Then from the equation (r,r1) = 0, we get
(sinh2 u' + cosh? ul) (€0, p) = 0.

We obtain that p(u?,...,u!) = 0 for any u!.
Therefore the radius vector of the submanifold F! is

7Y = coshu!
zt =sinhulp!(u?, ..., u)
r=19q...
zl = sinhu!pl(u?, ..., u!)
[ 2*! =sinhulp! (2, ... ul)

Since F! has the metric of revolution (3.9), then
(ri,rj) = sinh? u!(p;, pi) = sinh? u! gij, 4,7=2,...,1,

where o0;; are the coefficients of the metric do?.

We obtain that if u! > 0, then the submanifold F'~! with the radius vector
p(u?, ..., ul) is alocally isometric immersion of a domain of a sphere S~! into the
sphere S* ¢ H'!. The geodesic coordinate lines u' coincide with the geodesics
of the space H't! that are orthogonal to the sphere S!. From singularity of
polar coordinates, we get that all coordinate lines u' intersect at the origin of
the coordinate system. Hence the submanifold F* is a cone with one-dimensional
generator over F'=1 c St

2.3) Let do? be a flat metric. Since the submanifold F! has a zero extrinsic
curvature, it follows that

90”_90:07 (80/)2_(,02:0-

Then p(u') = e ', ¢(0) = 1. Thus the metric of the submanifold F! has the
form

2
ds® = (dut)® + e~ <(du2)2 oot () ) . (3.11)
Similarly to the previous parts, consider the map
F=etr 67“17’1.

The rank of this map is also equal to 0. It follows that 7 is a constant vector and
(r,7) = 0. Take the coordinate system in Ei“ such that 7 = (1,1,0,...,0) =
ep + eq in Ei—H.
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Then the radius vector of F' is

r = coshuley + sinhule; + e‘“lp(u2, b,
From (r,r) = —1, by a direct computation, we get
6—2u1< _ —ul 1 o —ul . 1
p,py = —2e " coshu (e, p) —2e~ " sinhu (ey, p). (3.12)

Since (r,r1) = 0, it follows that

e v (sinhu' — coshu') (eq, p) + e (coshu' — sinhu') (e1, p)

— e (p,p) =0. (3.13)

From (3.12) and (3.13), we obtain (eg, p) + (e1,p) = 0, which means that py =
p1. Therefore, the submanifold F'~! with the radius vector p belongs to the
horosphere E! ¢ HH,

Since F! has the metric of revolution (3.11), it follows that F'~! has the
intrinsic flat metric.

The radius vector of the submanifold F! has the form

P 1

29 = coshu! + e p2(u?, ..., ub)

. _ 1
r! =sinhu! + e p2u?, ..., ub)
1

r=<x?=e""p2(u? ..., u)

41 _ —ul Ji+1,2 l

(2! Tt =" pM (w2, .. uh)

We obtain that if «' > 0, then the submanifold F'~! with the radius vector
p(u?,...,ul) is a locally isometric immersion of a domain of a Euclidean space
E'~1! into the horosphere E! ¢ H'*'. The coordinate lines u! coincide with the
geodesic lines of H*! that are orthogonal to the horosphere E!. Consider H'*! in
a Cayley-Klein model inside the unit ball. Then all coordinate lines u' intersect
at the fixed point on the absolute of the model (point on infinity). Thus we get
that the submanifold F' is an asymptotic cone with one-dimensional generator

over FI=1 ¢ El. O

4. Submanifolds of positive extrinsic sectional curvature in hy-
perbolic space

Theorem 4.1. Suppose that F' is a reqular hypersurface in a hyperbolic space
HA Ei“ with the induced metric of revolution of positive extrinsic sectional
curvature.

1. If1>2, then F' is a hypersurface of revolution.

1

2. Ifl =2 and the coordinate lines u' are the lines of curvature, then F? is a

hypersurface of revolution in H?.
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Proof. 1. A metric of revolution has the form
ds®> = (dul)2 + goQ(ul)dag, (4.1)

where do? is the metric of constant curvature.

The proof is similar for all three cases, namely, when the curvature of do? is
equal to —1, 0, 1. Consider the case when do? is a metric of constant sectional
curvature 1. Then the function ¢ satisfies the following conditions: ¢(0) = 0,
¢©'(0) =1 and " (ul) — p(ul) <0, (¢'(u!))? — p*(ul) < 1 for u! > 0.

Consider a hypersurface of revolution F* ¢ H!*! ¢ Ei”, I > 2, with the
radius vector

20 = h(ul)
at = g(u')
2 _ 1\ 1,2 !
r(ul, ,UZ) _ T~ = f(u )p (u ) ) l) 7 (42)
a? = f(ul)pz(u27 ) )
= e, )
where p = (p1 (w?,...ub), ... pl 2, ..., ul)) is a radius vector of the unite sphere
Sl_l,
() + (") +- () =1. (4.3)
Since F! belongs to the hyperboloid H*!, we get (r,r) = —1. Then
K+ P+ =1 (4.4)
Suppose I has the induced metric of revolution (4.1). Then
gu=—Mm)P+()-()=1 (4.5)
©?do® = f2dp°. (4.6)

From equation (4.6), it follows that f(u!) = ¢(u'). Consider equations (4.4) and
(4.5),

_R2 4 2 2 _ 4

—(M)?+(9)* + (¢")? = 1.
The solution of the system (4.7) is
g(u') = V1 +¢2(ul) sinha(u'),

h(u') = /1 + ¢%(ul) cosha(ul),

where

1
[ VI (@) + 3 ()
alu') = 5 dt.
0 1+ ¢(1)
We obtain a hypersurface of revolution F! with the induced metric of revolu-
tion of positive extrinsic curvature in hyperbolic space H'*.
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Now, let us take two isometric hypersurfaces of revolution F; and Fy in H!*!
with induced metric of revolution of positive extrinsic sectional curvature. The
radius vectors of these surfaces are

29 =20 (ul, ... ul)

1 1,1 !

x, =z (u', ..., u
R

x?jl = xéjl( Lo b

Consider the Pogorelov transformation (see [9]) that maps the isometric hy-
persurfaces FY, F} c H'*! into the hypersurfaces I}, F2 in the Euclidean space
EFL. The radius vectors of Fl, F2 are equal to

~ _ ri+{r,e)e0 = - 12+(rep)eo
Fli’f'l:— FQI’PQ:—
04 0 0 0
] + 1y Ty + Tq
where eg = (1,0,...,0) is a coordinate vector along the axes z°.

The hypersurfaces Iy, Fy are also isometric (see [9, Theorem 2]). The co-
efficients of the second fundamental form of Fy, F5 at the origin of coordinate
system are equal to

- bL(0) b?.(0)
1 _ 2 Y
bij(0) = =5 —,  b;;(0) = —5—,

where bzlj, bij are the coefficients of the second fundamental form of Fi, Fy,
respectively.

Since the hypersurfaces Fy and Fy have the positive defined second funda-
mental forms of rank [, then the second fundamental forms of F1, Fg are also
positive defined.

If [ > 3, then the ranks of the second fundamental forms of ﬁl, ﬁg in B!+
are greater or equal to 3. Since E, F, are isometric, it follows that they coincide
up to a rigid motion in the Euclidean space E'*! [10, Theorem 6.2]. From the
properties of Pogorelov’s transformation, we get that the isometric hypersurfaces
of revolution F}, F! also coincide up to a rigid motion in the hyperbolic space
Hl+1.

2) For [ = 2, the proof is similar to that of Theorem 2.3. O
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BararoBumipHi miiMHOrOBU I 3 METPUKOIO OOepTaHHS Yy
npocTtopi JIobaueBchbKOTO

Darya Sukhorebska

Y poboTi PO3MIAHYTO CTPYKTYPY MiJMHOTOBHIIB MaJiol KOBUMIPHOCTI 3
iHJIyKOBaHOIO METPUKOIO obepTaHHsi y mpocTopi JlobadeBcrkoro. 3HaiigeHo
YMOBY HA& 30BHIIIHI BJIACTUBOCTI TaKUX i IMHOTOBHJIIB, 38 SKUX IIiJIMHOI'O-
BHJ € MiAIMHOroBHIOM obepranus. [lg cTarTs € y3arajJbHEeHHSM Pe3yJIbTaTiB,
OJIep2KaHUX JJIsI TiIMHOTOBHU/IIB €BKJIJIOBOT'O IIPOCTOPY.

Kirrodgosi ciioBa: MmeTpuka 0bepTaHHs, i IMHOTOBYT OOEPTAHHS, JIHIT KpHU-
BUHH, CEKITIiTHA KPUBUHA
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