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Multidimensional Submanifolds with Metric

of Revolution in Hyperbolic Space
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In the paper, the structure of submanifolds of low codimension with in-
duced metric of revolution in a hyperbolic space is considered. The condition
on extrinsic properties of such submanifolds to be submanifolds of revolu-
tion is found. This paper is a generalization of the result for submanifolds
in Euclidean space.
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In Euclidean space E3, a 2-dimensional surface of revolution of constant Gaus-
sian curvature admits a standard coordinate system (u1, u2) such that the metric
of this surface is the metric of revolution

ds2 =
(
du1
)2

+ ϕ2(u1)
(
du2
)2
.

On the other hand, from the fact that the induced metric on F 2 ⊂ E3 is a
metric of revolution it does not follow that F 2 is a surface of revolution. There
is a locally isometric embedding F 2 in E3 such that the geodesic line u2 = 0
mapped onto a space curve with torsion is not equal to zero at any point. The
following example can be constructed by using the Cauchy–Kowalewski theorem.

Therefore it is interesting to find the condition when a multidimensional sub-
manifold F l with induced metric of revolution in a space of constant curvature
M l+p is a submanifold of revolution.

A.A. Borisenko in [4] presented this condition for submanifolds in Euclidean
space. Let F l be a submanifold of low codimension in Euclidean space with
induced metric of revolution of constant-sign sectional curvature. If the geodesic
coordinate lines on F l are the lines of curvature, then F l is a submanifold of
revolution.

In paper [11], it was considered a classification of submanifolds in the Eu-
clidean space in terms of the indicatrix of normal curvature up to projective
transformation. In [1] it was studied an isometric immersions of the Lobachevsky
plane into 4-dimensional Euclidean space with flat normal connection.

In the present paper, we consider an isometric immersion of submanifolds F l

of low codimension with induced metric of revolution in hyperbolic space H l+p.
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We consider 3 cases, when the extrinsic sectional curvature of F l is negative, zero,
and positive.

The similar result is true for submanifolds of low codimension with induced
metric of revolution in a spherical space Sl+p.

1. Main definitions

Let En1 be a pseudo Euclidean space of signature (1, n). The scalar product
of vectors X(x0, x1, . . . , xn) and Y (y0, y1, . . . , yn) in En1 is

〈X,Y 〉 = −x0y0 + x1y1 + · · ·+ xnyn. (1.1)

Consider a sheet of a hyperboloid in En1

Hn = {X(x0, x1, . . . , xn)|〈X,X〉 = −1, x0 > 0}.

The pseudo Euclidean metric induces the metric of constant negative curvature
−1 on Hn.

Definition 1.1. A multidimensional Riemannian metric on a manifold F l is
called a metric of revolution if there exists a regular coordinate system such that
this Riemannian metric has the form

ds2 =
(
du1
)2

+ ϕ2(u1)dσ2, (1.2)

where ϕ(u1) > 0 is a regular function, dσ2 is a Riemannian metric of constant
sectional curvature.

Definition 1.2. A submanifold F l in a hyperbolic space H l+p ⊂ El+p1 is
called a submanifold of revolution if the radius vector of F l equals

r(u1, . . . , ul) =



x0 = χ(u1)

x1 = ψ(u1)

x2 = ϕ(u1)ρ1(u2, . . . , ul)

· · ·
xl+p = ϕ(u1)ρl+p−1(u2, . . . , ul)

, (1.3)

where

−χ2 + ψ2 + ϕ2 = −1,(
ρ1
)2

+
(
ρ2
)2

+ · · ·+
(
ρl+p−1

)2
= 1,

and dσ2 =
(
dρ1
)2

+ · · ·+
(
dρl+p−1

)2
is a Riemannian metric of constant sectional

curvature.
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The curve γ(u1) with the radius vector

γ(u1) =


x0 = χ(u1)

x1 = ψ(u1)

x2 = ϕ(u1)

lies on the hyperbolic plane H2 ⊂ E2
1 and u1 is the arc-length parameter of γ.

The submanifold F l is obtained by the rotation of the curve γ(u1) along the

submanifold F l−1 ⊂ Sl+p−2 in El+p1 . The radius vector of F l−1 is

ρ(u2, . . . , ul) =
(

0, 0, ρ1(u2, . . . , ul), . . . , ρl+p−1(u2, . . . , ul)
)
.

The submanifold F l−1 has the intrinsic Riemannian metric dσ2 of constant sec-
tional curvature.

From (1.3), it is easy to check that the submanifold of revolution F l admits
the metric of revolution (1.2).

Consider the reverse problem, when a multidimensional submanifold F l with
induced metric of revolution (1.2) of constant-sign sectional curvature is a sub-
manifold of revolution in H l+p.

Definition 1.3. A line γ ⊂ F l ⊂ El+p1 is called a line of curvature of a
submanifold F l if for any normal n from the normal space NF l the tangent
vector γ′ is a principal direction of the second fundamental form with respect to
the normal n.

Definition 1.4. A direction τ from the tangent space TQF
l at a point Q of a

submanifold F l in Riemannian manifold M l+p is called asymptotic if Bn (τ, τ) =
0 for any normal n ∈ NQF

l at this point, where Bn is the second fundamental
form relative to the normal n.

2. Submanifolds of negative extrinsic sectional curvature in hy-
perbolic space

Lemma 2.1. Let F l be a submanifold in hyperbolic space H2l−1 with induced
metric of revolution

ds2 =
(
du1
)2

+ ϕ2(u1) dσ2, (2.1)

where ϕ(u1) > 0 is a regular function, dσ2 is a Riemannian metric of constant
sectional curvature. Let F l have a negative extrinsic sectional curvature. Then

1. If dσ2 is a flat metric, then ϕ′′ − ϕ > 0, (ϕ′)2 − ϕ2 > 0.

2. If dσ2 is the metric of unit sphere, then ϕ′′ − ϕ > 0, (ϕ′)2 − ϕ2 > 1, ϕ′ > 1
when u1 > 0, and ϕ(0) = 0, ϕ′(0) = 1.

3. If dσ2 is the metric of hyperbolic space of curvature −1, then ϕ′′ − ϕ > 0,
(ϕ′)2 − ϕ2 > −1.
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Proof. 1. Consider the case when dσ2 is a flat metric. Then the metric of
revolution (2.1) is

ds2 =
(
du1
)2

+ ϕ2(u1)

((
du2
)2

+ · · ·+
(
dul
)2)

. (2.2)

In this case, the nonzero Christoffel symbols of the metric ds2 equal

Γj1i = δji
ϕ′

ϕ
, Γ1

ij = −δjiϕϕ
′, i, j = 2, . . . , l. (2.3)

The intrinsic sectional curvatures of F l along coordinate 2-dimensional planes
Πij are equal

K(Π1j) = −ϕ
′′

ϕ
, K(Πij) = −(ϕ′)2

ϕ2
, i, j = 2, . . . , l.

From the Gauss equation, it follows that the extrinsic and intrinsic section
curvatures of the submanifold F l in H2l−1 satisfy

Kext = Kint + 1. (2.4)

Then the extrinsic sectional curvatures of F l equal

Kext(Π1j) = −ϕ
′′ − ϕ
ϕ

, Kext(Πij) =
−(ϕ′)2 + ϕ2

ϕ2
, i, j = 2, . . . , l.

Since F l has negative extrinsic sectional curvature, it follows that

ϕ′′ − ϕ > 0, (ϕ′)2 − ϕ2 > 0.

2. The case, when dσ2 is a metric of constant sectional curvature 1. The
metric (2.1) has the form

ds2 =
(
du1
)2

+ ϕ2(u1)
4
((
du2
)2

+ · · ·+
(
dul
)2)

(1 + (u2)2 + · · ·+ (ul)2)
2 .

By direct computations, we get

K(Π1j) = −ϕ
′′

ϕ
, K(Πij) =

1− (ϕ′)2

ϕ2
, i, j = 2, . . . , l.

From the Gauss equation, we obtain the extrinsic sectional curvatures of F l,

Kext(Π1j) = −ϕ
′′ − ϕ
ϕ

, Kext(Πij) =
1− (ϕ′)2 + ϕ2

ϕ2
, i, j = 2, . . . , l.

By the assumption, the metric of F l is regular. From the singularity of polar
coordinate system, it follows that ϕ(0) = 0, ϕ′(0) = 1. Since F l has a negative
extrinsic curvature, then for u1 > 0 we get

ϕ′′ − ϕ > 0, (ϕ′)2 − ϕ2 > 1. (2.5)



Multidimensional Submanifolds with Metric of Revolution 273

3. Consider the case, when dσ2 is a metric of constant sectional curvature
−1. The metric (2.1) has the form

ds2 =
(
du1
)2

+ ϕ2(u1)
4
((
du2
)2

+ · · ·+
(
dul
)2)

(1− (u2)2 − · · · − (ul)2)
2 .

Then we get

K(Π1j) = −ϕ
′′

ϕ
, K(Πij) =

−1− (ϕ′)2

ϕ2
, i, j = 2, . . . , l.

The extrinsic sectional curvatures of F l equal

Kext(Π1j) = −ϕ
′′ − ϕ
ϕ

, Kext(Πij) =
−1− (ϕ′)2 + ϕ2

ϕ2
, i, j = 2, . . . , l.

Since F l has a negative extrinsic curvature, it follows that

ϕ′′ − ϕ > 0, (ϕ′)2 − ϕ2 > −1.

Let r = r(u1, . . . , ul) be a radius vector of the submanifold F l in a hyperbolic
space H2l−1 ⊂ E2l−1

1 . Denote ∂r/∂ui by ri and denote ∂2r/
(
∂ui∂uj

)
by rij .

Lemma 2.2. Let F l be a C3-regular submanifold in a hyperbolic space
H2l−1 ⊂ E2l−1

1 with the induced metric of revolution of negative extrinsic sectional
curvature. If the coordinate lines u1 are the lines of curvature of the submanifold
F l, then the rank of the map

r̃ =
ϕ′√

(ϕ′)2 − ϕ2
r − ϕ√

(ϕ′)2 − ϕ2
r1 (2.6)

is equal to one.

Proof. Let bαij be the coefficients of the second fundamental forms F l with

respect to the orthogonal basis of normals nα, α = 0, . . . , l − 1. Since F l locates
on the hyperbolic space H2l−1 ⊂ E2l−1

1 , it follow that n0 = r. Then

b011 = −〈r11, n0〉 = 〈r1, r1〉 = 1.

Since the coordinate lines u1 are the lines of curvature of the submanifold F l, it
follows that

bα1j = 0, j = 2, . . . , l, α = 0, . . . , l − 1.

Now we calculate the Jacobi matrix of the map (2.6):

r̃1 =

(
ϕ′√

(ϕ′)2 − ϕ2

)′
r +

ϕ′√
(ϕ′)2 − ϕ2

r1

−

(
ϕ√

(ϕ′)2 − ϕ2

)′
r1 −

ϕ√
(ϕ′)2 − ϕ2

r11,
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r̃j =
ϕ′√

(ϕ′)2 − ϕ2
rj −

ϕ√
(ϕ′)2 − ϕ2

r1j , j = 2, . . . , l.

From the Weingarten equations

rij = Γkijrk +

l−1∑
α=0

bαijn
α

for F l ⊂ H l+1 ⊂ El+1
1 (see [7, §64]) and (2.3), we have

r11 = r +
l−1∑
α=1

bα11n
α, r1j =

ϕ′

ϕ
rj , j = 2, . . . , l.

Hence we get

r̃1 =
−ϕ2 (ϕ′′ − ϕ)

((ϕ′)2 − ϕ2)3/2
r +

ϕϕ′(ϕ′′ − ϕ)

((ϕ′)2 − ϕ2)3/2
r1 −

l−1∑
α=1

ϕ√
(ϕ′)2 − ϕ2

bα11n
α 6= 0,

r̃j = 0, j = 2, . . . , l.

It follows that the rank of the Jacobi matrix of the map (2.6) is equal to 1 and r̃
depends only on the variable u1, i.e., r̃ = Φ(u1).

Theorem 2.3. Let F l be a C3-regular submanifold in a hyperbolic space
H2l−1 ⊂ E2l−1

1 with the induced metric of revolution of negative extrinsic sectional
curvature

ds2 =
(
du1
)2

+ ϕ2(u1) dσ2, (2.7)

where ϕ(u1) is a regular positive function and dσ2 is a Riemannian metric of
constant sectional curvature. If the coordinate lines u1 are the lines of curvature
of the submanifold F l, then F l is a submanifold of revolution.

Proof. 1. dσ2 is a flat metric. Consider an ordinary differential equation

ϕ′√
(ϕ′)2 − ϕ2

r − ϕ√
(ϕ′)2 − ϕ2

r1 = Φ(u1) (2.8)

with respect to the vector function r. The solution of this equation is

r(u1, . . . , ul) = −ϕ(u1)

∫ u1

0

√
(ϕ′(t))2 − ϕ2(t)

ϕ2(t)
Φ(t)dt+ ϕ(u1)C(u2, . . . , ul).

Consider the constant λ =

√
(ϕ′(0))2−ϕ2(0)

ϕ(0)ϕ′(0) , and rewrite r in the following way:

r = ϕ(u1)

(
λΦ(0)−

∫ u1

0

√
(ϕ′(t))2 − ϕ2(t)

ϕ2(t)
Φ(t)dt

)
+ϕ(u1)

(
C(u2, . . . , ul)− λΦ(0)

)
. (2.9)
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We set

ψ(u1) = ϕ(u1)

(
λΦ(0)−

∫ u1

0

√
(ϕ′(t))2 − ϕ2(t)

ϕ2(t)
Φ(t)dt

)
, (2.10)

ρ(u2, . . . , ul) = C(u2, . . . , ul)− λΦ(0).

From the choice of constant λ, we get

ψ(0) =

√
(ϕ′(0))2 − ϕ2(0)

ϕ′(0)
Φ(0), (2.11)

ψ′(0) = 0. (2.12)

So the radius vector r of the submanifold F l is

r = ψ(u1) + ϕ(u1)ρ(u2, . . . , ul).

The vectors tangent to the coordinate lines of F l have the form

r1 = ψ′(u1) + ϕ′(u1)ρ(u2, . . . , ul),

rj = ϕ(u1)ρj(u
2, . . . , ul), j = 2, . . . , l.

Since F l has the induced metric of revolution (2.2), then

g11 = 〈ψ′, ψ′〉+ 2ϕ′〈ψ′, ρ〉+ (ϕ′)2〈ρ, ρ〉 = 1, (2.13)

g1j = ϕ〈ψ′, ρj〉+ ϕϕ′〈ρ, ρj〉 = 0, (2.14)

gij = ϕ2〈ρi, ρj〉 = ϕ2δji , i, j = 2, . . . , l. (2.15)

Consider equation (2.13) when u1 = 0. Using (2.12), we get that for any
u2, . . . , ul,

〈ρ, ρ〉 =
1

(ϕ′(0))2
.

Then the submanifold F l−1 with the radius vector ρ = ρ(u2, . . . , ul) belongs to a
sphere S2l−3

R ⊂ E2l−2 of radius R = 1/ϕ′(0). From (2.15), it follows that F l−1

has the flat intrinsic metric.

Let us show that F l−1 does not belong to the Euclidean space E2l−3. Assume
the converse. Then F l−1 is a submanifold on a sphere S2l−4

R ⊂ E2l−3. From the
Gauss equation, the extrinsic curvatures of the F l−1 are obtained

Kext(F
l−1) = −(ϕ′(0))2.

It is known that if a submanifold Fm of a Riemannian space Mm+p has a negative
extrinsic sectional curvature, then p ≥ m − 1 [5, Theorem 3.2.2]. In our case,
m = l − 1, Mm+p = S2l−4. We get that the codimension of F l−1 equals p = l −
3 = m − 2. From this contradiction one can conclude that F l−1 belongs to the
sphere S2l−3

R ⊂ E2l−2.
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Since 〈r, rj〉 = 0, then 〈ψ, ρj〉 = 0. If u1 = 0, then from (2.11) it follows that

〈Φ(0), ρj〉 = 0.

From (2.14), we get that 〈ψ′, ρj〉 = 0. Differentiating this equation with respect
to u1, we have

〈ψ′′, ρj〉 = 0, 〈ψ′′′, ρj〉 = 0, 〈ψ(4), ρj〉 = 0, . . . (2.16)

Consider (2.16) at the point u1 = 0. From (2.10), we obtain

ψ(k)(0) ∈ Lin{Φ(0),Φ′(0),Φ′′(0), . . . ,Φ(k−1)(0)}.

We get that for all u2, . . . , ul the following is true:

〈Φ′(0), ρj〉 = 0, 〈Φ′′(0), ρj〉 = 0, 〈Φ′′′(0), ρj〉 = 0, . . . (2.17)

These equations are true for all u1 and we can rewrite (2.17) in the following way:

〈Φ′(u1), ρ〉 = c0(u
1), 〈Φ′′(u1), ρ〉 = c1(u

1), 〈Φ′′′(u1), ρ〉 = c2(u
1), . . . . (2.18)

From (2.8), it follows that 〈Φ(u1),Φ(u1)〉 = −1. Consider the subspace L in
E2l−1

1 such that
L = Lin{Φ′(u1),Φ′′(u1),Φ′′′(u1), . . . }.

If dimL = 3, then from (2.18) it follows that the submanifold F l−1 belongs to
the Euclidean space E2l−3. We have proved before that this is impossible. Then
dimL = 2 for any point on the curve Φ(u1). Thus the curve Φ(u1) belongs to the
plane E1

1 ⊂ E2l−1
1 and the submanifold F l−1 is orthogonal to Φ(u1).

Choose the orthogonal coordinate system such that the plane E1
1 coincides

with the plane x0Ox1, where O is the origin of coordinates. Then Φ(u1) =(
µ(u1), ν(u1), 0, . . . , 0.

)
. Using (2.9), we obtain the radius vector of the subman-

ifold F l,

r =



x0 = χ(u1)

x1 = ψ(u1)

x2 = ϕ(u1)ρ1(u2, . . . , ul)

. . .

xl+p = ϕ(u1)ρl+p−1(u2, . . . , ul)

.

It follows that the submanifold F l is a submanifold of revolution. This completes
the proof of Theorem 2.3, part 1.

2. dσ2 is a metric of constant sectional curvature 1.
Consider u10 such that u1 > u10 > 0. Assume that u10 = 0. Every subman-

ifold u1 = u10 belongs to the sphere S2l−3
R ⊂ E2l−2 where R = 1/ϕ′(u10). From

Lemma 2.1, part 2, we get that ϕ′(u1) > 1, ϕ′′(u1) > 1 for u1 > 0. Therefore
F l lies inside the sphere S of radius 1. Moreover, this sphere S is the supporting
sphere of F l at the point u1 = 0. The normal n of the sphere S coincides with the
normal of F l at the point u1 = 0 in H2l−1. It follows that the second form of F l
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with respect to the normal n is positive defined. Then there are no asymptotic
direction at the point u1 = 0. On the other hand, F l has a negative extrinsic
sectional curvature in H2l−1. Then F l has 2l−1 asymptotic directions at every
point [3, Lemma 3.2.1]. From this contradiction we get u10 > 0.

The submanifold F l−1 with the radius vector ρ has the intrinsic metric of
constant curvature 1 and lies inside a sphere S2l−3

R ⊂ E2l−2 of radius R =
1/ϕ′(u10). The extrinsic curvature Kext(F

l−1) of the submanifold F l−1 is

Kext(F
l−1) = 1−

(
ϕ′(u10)

)2
< 0.

By the same argument as in the part 1, the curve Φ(u1) belongs to the plane
E1

1 ⊂ E2l−1
1 , and Φ(u1) is orthogonal to F l−1.

Choose the orthogonal coordinate system such that the plane E1
1 coincides

with the plane x0Ox1. Thus we obtain that the submanifold F l is a submanifold
of revolution.

3. dσ2 is a metric of constant sectional curvature Kσ = −1. In this case, the
proof is similar to that of the part 1.

3. Submanifolds of zero extrinsic sectional curvature in hyper-
bolic space

Let Ll be a hypersurface of constant curvature in H l+1 and F l−1 be a sub-
manifold of Ll. Through every point of F l−1 construct the geodesics γ tangent
to the normal of Ll in H l+1. We get the surface F l with one-dimensional gener-
ator over the submanifold F l−1 in H l+1. Consider H l+1 in a Cayley-Klein model
inside the unit ball. Then

1) If all geodesics γ intersect in the fixed point inside the ball, then F l is a
cone.

2) If all geodesics γ intersect in the fixed point on the absolute of the model,
then F l is called an asymptotic cone.

3) If all geodesics γ do not intersect each other either inside the ball or on the
absolute, then F l is a cylinder with one-dimensional generator.

Theorem 3.1. Suppose F l is a regular hypersurface in hyperbolic space H l+1

with the induced metric of revolution of zero extrinsic sectional curvature

ds2 =
(
du1
)2

+ ϕ2(u1) dσ2, (3.1)

where ϕ(u1) > 0 is a regular function, dσ2 is a Riemannian metric of constant
sectional curvature. Let the coordinate lines u1 be the lines of curvature of the
submanifold F l.

1. If dσ2 is a metric of constant sectional curvature -1, then F l is a cylin-
der with one-dimensional generator over a local isometric immersion of a
domain of hyperbolic space H l−1 into H l.
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2. If dσ2 is a metric of constant sectional curvature 1, then F l is a cone with
one-dimensional generator over a local isometric immersion of a domain of
the unit sphere Sl−1 into the unit sphere Sl ⊂ H l+1.

3. If dσ2 is a metric of constant sectional curvature 0, then F l is an asymptotic
cone with one-dimensional generator over a local isometric immersion of a
domain of Euclidean space El−1 into the horosphere El ⊂ H l+1.

Proof. Consider the definition of null-index (see [2]).

Definition 3.2. The extrinsic null-index µ(Q) of a point Q of a submanifold
F l in the Riemannian manifold M l+p is the maximal dimension of a subspace
L(Q) of the tangent space TQF

l such that Bnx = 0 for any vector x ∈ L(Q) and
any normal n ∈ NQF

l at this point, where Bn is the linear transformation in
TQF

l corresponding to the second fundamental form relative to the normal n.

Chern and Kuiper (see [6]) proved that the null-index of a submanifold F l ⊂
M l+p with zero extrinsic curvature satisfies the inequality

µ ≥ l − p.

In our case, we get that the null-index of F l in H l+1 equals µ(Q) = l− 1 for any
point Q of submanifold F l. Therefore the nullity foliation L(Q) is integrable and
the leaves SL(Q) of this foliation are totally geodesic submanifolds of constant
curvature −1 in H l+1. A normal n is constant along the leaves (see [8]).

Let us consider two cases.
1) The totally geodesic leaves SL(u1) ⊂ F l are orthogonal to the coordinate

lines u1.
Since F l has the induced metric of revolution (3.1), it follows that the leaves

of foliation SL(u1) have the intrinsic metric of sectional curvature Kσ/ϕ
2(u1),

where Kσ is a constant of curvature of metric dσ2. Since SL(u1) has a constant
curvature −1, then ϕ(u1) should be a constant function. The extrinsic sectional
curvature of F l ⊂ H l+1 along the coordinate plane Π1j equals

Kext(Π1j) = −ϕ
′′

ϕ
+ 1.

If ϕ(u1) is constant, then F l has non zero extrinsic sectional curvature. From
this contradiction, we get that case 1) is impossible.

2) The leaves SL(Q) of foliation contain the coordinate lines u1.
2.1) Let dσ2 be a Riemannian metric of constant negative curvature −1. Since
the submanifold F l has a zero extrinsic curvature, it follows

ϕ′′ − ϕ = 0, (ϕ′)2 − ϕ2 = −1.

Then ϕ = cosh(u1) and ϕ(u1) > 0 for all u1 ≥ 0. The metric of F l has the form

ds2 =
(
du1
)2

+ cosh2(u1) dσ2. (3.2)
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Let r = r(u1, . . . , ul) be a radius vector of F l. Consider the map

r̃ = − sinhu1 r + coshu1 r1. (3.3)

Calculate the rank of this map

r̃1 = coshu1 (−r + r11) , r̃j = − sinhu1 rj + coshu1 r1j . (3.4)

Let n be a normal to F l inH l+1 and bij be the coefficients of the second fundamen-
tal form. The coordinate lines u1 are the lines of a curvature of the submanifold
F l, then b1j = 0, j = 2, . . . , l. Since the lines u1 belong to the leaves SL(Q), it
follows that b11 = 0.

From the Weingarten equations for F l ⊂ H l+1 (see [7, §64]) we obtain

r11 = Γk11rk + r + b11 n, r1j = Γk1jrk + b1j n.

By a direct computation, we have

Γk11 = 0, Γ1
1j = 0, Γi1j = δji

sinhu1

coshu1
, k = 1, ..., l, j, i = 2, ..., l.

Then

r11 = r, r1j =
sinhu1

coshu1
rj . (3.5)

Substitute (3.5) into (3.4). We get that the rank of the map (3.3) is equal
to 0. It follows that r̃ is a constant vector and 〈r̃, r̃〉 = 1. Choose in El+1

1 the
orthogonal coordinate system such that the axis xl+1 coincides with r̃, so r̃ =
(0, 0, . . . , 1) = el+1.

Consider the differential equation

− sinhu1 r + coshu1 r1 = el+1.

Solving this equation with respect to the vector function r, we get

r = sinhu1el+1 + coshu1ρ(u2, . . . , ul), (3.6)

where ρ = ρ(u2, . . . , ul) is a vector in El+1
1 .

The submanifold F l ⊂ H l+1 with the radius vector r has the metric (3.2).
Consider the equations

〈r, r〉 = sinh2 u1 + coshu1 sinhu1〈el+1, ρ〉+ cosh2 u1〈ρ, ρ〉 = −1. (3.7)

〈r1, r1〉 = cosh2 u1 + coshu1 sinhu1〈el+1, ρ〉+ sinh2 u1〈ρ, ρ〉 = 1. (3.8)

Subtracting (3.7) from (3.8) yields

1 +
(
sinh2 u1 − cosh2 u1

)
〈ρ, ρ〉 = 2.

Thus we obtain that 〈ρ, ρ〉 = −1 for any u1.
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From 〈r, r1〉 = 0, we get

coshu1 sinhu1 + sinh2 u1〈el+1, ρ〉+ cosh2 u1〈el+1, ρ〉+ coshu1 sinhu1〈ρ, ρ〉 = 0;(
sinh2 u1 + cosh2 u1

)
〈el+1, ρ〉 = 0.

From this equation we get that ρl+1(u2, . . . , ul) = 0 for any u1.
Therefore, from (3.6) we obtain the radius vector of F l,

r =



x0 = coshu1ρ0(u2, . . . , ul)

x1 = coshu1ρ1(u2, . . . , ul)

. . . ;

xl = coshu1ρl(u2, . . . , ul)

xl+1 = sinhu1

.

Since F l has the metric of revolution (3.2), then

〈ri, rj〉 = cosh2 u1〈ρi, ρj〉 = cosh2 u1 σij , i, j = 2, ..., l.

where σij are the coefficients of the metric dσ2.
It follows that the intersection of F l with the hyperbolic space H l orthogonal

to coordinate lines u1 at u1 = 0 is a submanifold F l−1 with the radius vector ρ =
ρ(u2, . . . , ul) and F l−1 has the intrinsic metric of constant sectional curvature −1.
The coordinate lines u1 of F l coincide with the geodesic lines of H l+1 that are
orthogonal to the subspace H l containing F l−1. We obtain that the submanifold
F l in H l+1 is a cylinder with one-dimensional generator over F l−1.

2.2) Let dσ2 be a metric of constant sectional curvature 1.
Since the submanifold F l has a zero extrinsic curvature, it follows

ϕ′′ − ϕ = 0, (ϕ′)2 − ϕ2 = 1.

From the solution of these differential equations, we get ϕ = sinh(u1) and ϕ(u1) >
0 for all u1 > 0. Thus the metric of the submanifold F l has the form

ds2 =
(
du1
)2

+ 4 sinh2 u1

((
du2
)2

+ · · ·+
(
dul
)2)

(1 + (u2)2 + · · ·+ (ul)2)
2 . (3.9)

Similarly to the part 2.1), consider the map

r̃ = coshu1 r − sinhu1 r1.

The rank of this map is equal to 0. Then r̃ is a constant vector and 〈r̃, r̃〉 = −1.
Choose in El+1

1 an orthogonal coordinate system such that the axis x0 coincides
with r̃, so r̃ = (1, 0, . . . , 0) = e0.

From the differential equation

coshu1 r − sinhu1 r1 = e0,
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we get that the radius vector of F l is

r = coshu1e0 + sinhu1ρ(u2, . . . , ul), (3.10)

where ρ = ρ(u2, . . . , ul) is a vector in El+1
1 .

The submanifold F l ⊂ H l+1 with the radius vector r has the metric (3.9). In
a similar way, from 〈r, r〉 = −1 and 〈r1, r1〉 = 1 we obtain that 〈ρ, ρ〉 = 1 for any
u1.

Then from the equation 〈r, r1〉 = 0, we get(
sinh2 u1 + cosh2 u1

)
〈e0, ρ〉 = 0.

We obtain that ρ0(u2, . . . , ul) = 0 for any u1.
Therefore the radius vector of the submanifold F l is

r =



x0 = coshu1

x1 = sinhu1ρ1(u2, . . . , ul)

. . .

xl = sinhu1ρl(u2, . . . , ul)

xl+1 = sinhu1ρl+1(u2, . . . , ul)

.

Since F l has the metric of revolution (3.9), then

〈ri, rj〉 = sinh2 u1〈ρi, ρj〉 = sinh2 u1 σij , i, j = 2, . . . , l,

where σij are the coefficients of the metric dσ2.
We obtain that if u1 > 0, then the submanifold F l−1 with the radius vector

ρ(u2, . . . , ul) is a locally isometric immersion of a domain of a sphere Sl−1 into the
sphere Sl ⊂ H l+1. The geodesic coordinate lines u1 coincide with the geodesics
of the space H l+1 that are orthogonal to the sphere Sl. From singularity of
polar coordinates, we get that all coordinate lines u1 intersect at the origin of
the coordinate system. Hence the submanifold F l is a cone with one-dimensional
generator over F l−1 ⊂ Sl.

2.3) Let dσ2 be a flat metric. Since the submanifold F l has a zero extrinsic
curvature, it follows that

ϕ′′ − ϕ = 0, (ϕ′)2 − ϕ2 = 0.

Then ϕ(u1) = e−u
1
, ϕ(0) = 1. Thus the metric of the submanifold F l has the

form

ds2 =
(
du1
)2

+ e−2u
1

((
du2
)2

+ · · ·+
(
dul
)2)

. (3.11)

Similarly to the previous parts, consider the map

r̃ = e−u
1
r + e−u

1
r1.

The rank of this map is also equal to 0. It follows that r̃ is a constant vector and
〈r̃, r̃〉 = 0. Take the coordinate system in El+1

1 such that r̃ = (1, 1, 0, . . . , 0) =
e0 + e1 in El+1

1 .
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Then the radius vector of F l is

r = coshu1e0 + sinhu1e1 + e−u
1
ρ(u2, . . . , ul).

From 〈r, r〉 = −1, by a direct computation, we get

e−2u
1〈ρ, ρ〉 = −2e−u

1
coshu1〈e0, ρ〉 − 2e−u

1
sinhu1〈e1, ρ〉. (3.12)

Since 〈r, r1〉 = 0, it follows that

e−u
1 (

sinhu1 − coshu1
)
〈e0, ρ〉+ e−u

1 (
coshu1 − sinhu1

)
〈e1, ρ〉

− e−2u1〈ρ, ρ〉 = 0. (3.13)

From (3.12) and (3.13), we obtain 〈e0, ρ〉 + 〈e1, ρ〉 = 0, which means that ρ0 =
ρ1. Therefore, the submanifold F l−1 with the radius vector ρ belongs to the
horosphere El ⊂ H l+1.

Since F l has the metric of revolution (3.11), it follows that F l−1 has the
intrinsic flat metric.

The radius vector of the submanifold F l has the form

r =



x0 = coshu1 + e−u
1
ρ0(u2, . . . , ul)

x1 = sinhu1 + e−u
1
ρ0(u2, . . . , ul)

x2 = e−u
1
ρ2(u2, . . . , ul)

. . .

xl+1 = e−u
1
ρl+1(u2, . . . , ul)

.

We obtain that if u1 > 0, then the submanifold F l−1 with the radius vector
ρ(u2, . . . , ul) is a locally isometric immersion of a domain of a Euclidean space
El−1 into the horosphere El ⊂ H l+1. The coordinate lines u1 coincide with the
geodesic lines of H l+1 that are orthogonal to the horosphere El. Consider H l+1 in
a Cayley–Klein model inside the unit ball. Then all coordinate lines u1 intersect
at the fixed point on the absolute of the model (point on infinity). Thus we get
that the submanifold F l is an asymptotic cone with one-dimensional generator
over F l−1 ⊂ El.

4. Submanifolds of positive extrinsic sectional curvature in hy-
perbolic space

Theorem 4.1. Suppose that F l is a regular hypersurface in a hyperbolic space
H l+1 ⊂ El+1

1 with the induced metric of revolution of positive extrinsic sectional
curvature.

1. If l > 2, then F l is a hypersurface of revolution.

2. If l = 2 and the coordinate lines u1 are the lines of curvature, then F 2 is a
hypersurface of revolution in H3.
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Proof. 1. A metric of revolution has the form

ds2 = (du1)2 + ϕ2(u1)dσ2, (4.1)

where dσ2 is the metric of constant curvature.
The proof is similar for all three cases, namely, when the curvature of dσ2 is

equal to −1, 0, 1. Consider the case when dσ2 is a metric of constant sectional
curvature 1. Then the function ϕ satisfies the following conditions: ϕ(0) = 0,
ϕ′(0) = 1 and ϕ′′(u1)− ϕ(u1) < 0, (ϕ′(u1))2 − ϕ2(u1) < 1 for u1 > 0.

Consider a hypersurface of revolution F l ⊂ H l+1 ⊂ El+2
1 , l > 2, with the

radius vector

r(u1, . . . , ul) =



x0 = h(u1)

x1 = g(u1)

x2 = f(u1)ρ1(u2, . . . , ul)

x3 = f(u1)ρ2(u2, . . . , ul)

. . .

xl+1 = f(u1)ρl(u2, . . . , ul)

, (4.2)

where ρ =
(
ρ1(u2, . . . , ul), . . . , ρl(u2, . . . , ul)

)
is a radius vector of the unite sphere

Sl−1,
(ρ1)2 + (ρ2)2 + · · ·+ (ρl)2 = 1. (4.3)

Since F l belongs to the hyperboloid H l+1, we get 〈r, r〉 = −1. Then

− h2 + g2 + f2 = −1. (4.4)

Suppose F l has the induced metric of revolution (4.1). Then

g11 = −(h′)2 + (g′)2 − (f)2 = 1. (4.5)

ϕ2dσ2 = f2dρ2. (4.6)

From equation (4.6), it follows that f(u1) = ϕ(u1). Consider equations (4.4) and
(4.5), {

−h2 + g2 + ϕ2 = −1,

−(h′)2 + (g)2 + (ϕ′)2 = 1.
(4.7)

The solution of the system (4.7) is

g(u1) =
√

1 + ϕ2(u1) sinhα(u1),

h(u1) =
√

1 + ϕ2(u1) coshα(u1),

where

α(u1) =

∫ u1

0

√
1− (ϕ′(t))2 + ϕ2(t)

1 + ϕ2(t)
dt.

We obtain a hypersurface of revolution F l with the induced metric of revolu-
tion of positive extrinsic curvature in hyperbolic space H l+1.



284 Darya Sukhorebska

Now, let us take two isometric hypersurfaces of revolution F1 and F2 in H l+1

with induced metric of revolution of positive extrinsic sectional curvature. The
radius vectors of these surfaces are

rk =


x0k = x0k(u

1, . . . , ul)

x1k = x1k(u
1, . . . , ul)

. . .

xl+1
k = xl+1

k (u1, . . . , ul)

, k = 1, 2.

Consider the Pogorelov transformation (see [9]) that maps the isometric hy-
persurfaces F l1, F

l
2 ⊂ H l+1 into the hypersurfaces F̃1, F̃

l
2 in the Euclidean space

El+1. The radius vectors of F̃1, F̃
l
2 are equal to

F̃1 : r̃1 =
r1 + 〈r1, e0〉e0

x01 + x02
, F̃2 : r̃2 =

r2 + 〈r2, e0〉e0
x01 + x02

,

where e0 = (1, 0, . . . , 0) is a coordinate vector along the axes x0.
The hypersurfaces F̃1, F̃2 are also isometric (see [9, Theorem 2]). The co-

efficients of the second fundamental form of F̃1, F̃2 at the origin of coordinate
system are equal to

b̃1ij(0) =
b1ij(0)

2
, b̃2ij(0) =

b2ij(0)

2
,

where b1ij , b
2
ij are the coefficients of the second fundamental form of F1, F2,

respectively.
Since the hypersurfaces F1 and F2 have the positive defined second funda-

mental forms of rank l, then the second fundamental forms of F̃1, F̃2 are also
positive defined.

If l ≥ 3, then the ranks of the second fundamental forms of F̃1, F̃2 in El+1

are greater or equal to 3. Since F̃1, F̃2 are isometric, it follows that they coincide
up to a rigid motion in the Euclidean space El+1 [10, Theorem 6.2]. From the
properties of Pogorelov’s transformation, we get that the isometric hypersurfaces
of revolution F l1, F

l
2 also coincide up to a rigid motion in the hyperbolic space

H l+1.
2) For l = 2, the proof is similar to that of Theorem 2.3.
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Багатовимiрнi пiдмноговиди з метрикою обертання у
просторi Лобачевського

Darya Sukhorebska

У роботi розглянуто структуру пiдмноговидiв малої ковимiрностi з
iндукованою метрикою обертання у просторi Лобачевського. Знайдено
умову на зовнiшнi властивостi таких пiдмноговидiв, за яких пiдмного-
вид є пiдмноговидом обертання. Ця стаття є узагальненням результатiв,
одержаних для пiдмноговидiв евклiдового простору.

Ключовi слова: метрика обертання, пiдмноговид обертання, лiнiї кри-
вини, секцiйна кривина
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