On a Uniqueness Property of n-th Convolutions and Extensions of Titchmarsh Convolution Theorem
DOI:
https://doi.org/10.15407/mag20.04.08Анотація
Ця замітка є спробою представити коротку історію про те, як питання Колмогорова про міри Гауса привело до низки теоретико-функціональних результатів, одержаних переважно Островським та деякими з його учнів. Замітка має на меті окреслити загальний розвиток, а не подати повний звіт про результати.
Mathematical Subject Classification 2020: 30D, 60E
Ключові слова:
ймовiрнiсна мiра, нескiнченно подiльна мiра, характеристична функцiя, аналiтична функцiя, теорема Тiтчмарша про згортку, теорiя розподiлу НеванлiнниПосилання
N. Blank and I.V. Ostrovskii, Functions of bounded variation that are close to a normal distribution function, Operator Theory in Functional Spaces and its Applications, Naukova Dumka, Kiev, 1981, 3--10 (Russian).
N. Blank, Unique determination of functions of bounded variation and distribution functions by asymptotic behavior as $x →∞$. Problems Stochastic Models (Panevezhis, 1980) Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1981, 10--15 (Russian).
N. Blank, Distributions whose convolutions are identical on the half line. Dokl. Akad. Nauk Ukrain. SSR Ser. A (1983), No. 6, 3--4 (Russian).
N. Blank, On uniqueness conditions for functions of bounded variation and distribution functions with values on the half-line, Theory Probab. Appl. 27 (1983), No. 4, 844--848. https://doi.org/10.1137/1127093
N. Blank, On a uniqueness property of second convolutions, Math. Scand. 104 (2009), No. 2, 182--187. https://doi.org/10.7146/math.scand.a-15093
A. Borichev, The generalized Fourier transform, the Titchmarsh theorem and almost analytic functions, Algebra i Analiz 1 (1989), No. 4, 17--53 (Russian). Errata: The generalized Fourier transform, the Titchmarsh theorem and almost analytic functions. Algebra i Analiz, 2 (1990), No. 5, 236--237 (Russian).
Y. Domar, Extension of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), 288--300. https://doi.org/10.1112/plms/s3-46.2.288
S. Gergün, I.V. Ostrovskii, and A. Ulanovskii, On the Titchmarsh convolution theorem, Ark. Mat. 40 (2002), No. 1, 55--71. https://doi.org/10.1007/BF02384502
I.A. Ibragimov, On determining an infinitely divisible distribution function by its values on the half-line, Theory Prob. Appl. 22 (1977), 384--390. https://doi.org/10.1137/1122043
A.I. Il'inskii, Normality of a multidimensional infinitely divisible distribution which coincides with a normal distribution in a cone. Lect. Notes Math., 1155, Springer-Verlag, Berlin, 1985, 47--59. https://doi.org/10.1007/BFb0074812
A.I. Il'inskii, Some remarks on the uniqueness of the extension of measures from subsets of the group ℤ2×ℝ. Stability Probl. Stochastic Models (Sukhumi, 1987), 55--59 (Russian).
V.M. Kruglov and A. Ulanovskii, Mixtures of probability distribution, which are determined uniquely by their behavior on a half-line, Teor. Veroyatn. Primen. 32 (1987), No. 4, 670--678 (Russian). https://doi.org/10.1137/1132093
I.V. Ostrovskii, A class of functions of bounded variation on the line defined by their values on a half line, Investigations on linear operators and the theory of functions, IX, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) (1979), No. 92, 220--229, 323 (Russian, English summary).
I.V. Ostrovskii, Measures that have infinitely many infinitely divisible extensions, Dokl. Akad. Nauk Ukrain. Ser. A (1982), No. 6, 18--20.
I.V. Ostrovskii, Measures with infinitely many infinitely divisible extensions, Sankhya A, 45 (1983), No. 3, 257--270.
I.V. Ostrovskii, Support of a convolution of finite measures, and measures determined uniquely by the restriction to a half-line, Dokl. Akad. Nauk Ukrain. Ser. A (1984), No. 3, 8--12 (Russian).
I.V. Ostrovskii, Generalization of the Titchmarsh convolution theorem and the complex-valued measures uniquely determined by their restrictions to a half-line, Stability Problems for Stochastic Models (Uzhgorod, 1984), Lect. Notes Math. 1155, Springer, Berlin, 1985, 256--283. https://doi.org/10.1007/BFb0074823
I.V. Ostrovskii and A. Ulanovskii, Classes of complex-valued Borel measures that can be uniquely determined by restrictions, Issled. Linein. Oper. Teorii Funktsii. 17, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170, 1989, 233--253, 325 (Russian).
I.V. Ostrovskii and A. Ulanovskii, Probability distributions and Borel measures uniquely determined by their restrictions to a half-space, Probab. Theory Math. Stat., II (Vilnius, 1989), 278--287. https://doi.org/10.1515/9783112319024-027
M. Riedel, On the one-sided tails of infinitely divisible distributions, Collection of articles dedicated to the memory of Wolfgang Richter, Math. Nachr. 70 (1975), 155--163. https://doi.org/10.1002/mana.19750700113
H.-J. Rossberg, On a problem of Kolmogorov concerning the normal distribution, Theory Prob. Appl. 19 (1974), 795--798. https://doi.org/10.1137/1119085
H.-J. Rossberg and G. Siegel, Continuation of convergence in the central limit theorem, Theory Prob. Appl., 20 (1975), 866--868. https://doi.org/10.1137/1120095
Titov, A. N., On the determination of a convolution of identical distribution functions from its values on a half line, Teor. Veroyatnost. Primenen. 26 (1981), no. 3, 610--611. https://doi.org/10.1137/1126066
A. Ulanovskii, On functions of bounded variation that are determined by restriction to a semi-axis, Math. USSR Sb., 60 (1988), 427--436. https://doi.org/10.1070/SM1988v060n02ABEH003179
A. Ulanovskii, When is half-line convergence to an infinitely divisible law ν equivalent to weak convergence to ν?, J. London Math. Soc. (2) 57 (1998), No. 1, 245--256. https://doi.org/10.1112/S002461079800581X
A. Ulanovskii, On the unique determination of convolutions of one-type distribution functions by their restriction to a half-line, Teor. Veroyatnost. Primenen. 32 (1987), No. 1, 135--137 (Russian). https://doi.org/10.1137/1132013
A. Ulanovskii, Measures on LCA groups whose $n$-fold convolutions are determined by the restriction to a massive set, Issled. Mat. Statist., 9, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 184, (1990), 264--270, 326.
M.G. Zaidenberg, Transcendental solutions of Diophantine equations, Funktsional. Anal. Prilozhen. 22 (1988), No. 4, 78--79 (Russian). https://doi.org/10.1007/BF01077427
M.G. Zaidenberg, Tests for hyperbolicity and families of curves, Teor. Funktsii, Funktsional. Anal. Prilozhen. (1989), No. 52, 40--54 (Russian).
V.M. Zolotarev, Some remarks on the paper ''On the Unique Determination of Stable Distribution Functions'' by H.-J. Rossberg and B. Jesiak, Math. Nachr. 82 (1978), 301--304. https://doi.org/10.1002/mana.19780820126