A Logarithmic Extensibility Criterion for a Keller–Segel–Navier–Stokes System in a Bounded Domain
Анотація
Розглянуто систему Келлера-Сеґеля-Нав'є-Стокса в тривимірній обмеженій області, доведено логарифмічний критерій руйнування локальних сильних розв'язків, використано $L^{p}$-метод, $L^{\infty}$-метод та оцінку максимальної регулярності параболічного рівняння.
Mathematical Subject Classification 2020:22E46, 53C35, 57S20, 35Q30
Ключові слова:
система Келлера-Сеґеля-Нав'є-Стокса, критерій розриву, обмежена областьПосилання
R.A. Adams and J.F. Fournier, Sobolev Spaces, Pure and Appl. Math., 140, Elsevier/Academic Press, Amsterdam, 2003.
H. Amann, Maximal regularity for nonautonomous evolution equations, Adv. Nonlinear Stud. 4 (2004), 417--430. https://doi.org/10.1515/ans-2004-0404
J. Azzam and J. Bedrossian, Bounded mean oscillation and the uniqueness of active scalar equations, Trans. Amer. Math. Soc. 367 (2015) 3095--3118. https://doi.org/10.1090/S0002-9947-2014-06040-6
A. Bendali, J.M. Dminguez, and S. Gallic, A variational approach for the vector potential formulation of the Stoke and Navier-Stokes problems in three- dimensional domains, J. Math. Anal. Appl. 107 (1985), 537--560. https://doi.org/10.1016/0022-247X(85)90330-0
P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. Math. Sci. Appl. 9 (2009), 347--359.
L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. B (2004), 1--28. https://doi.org/10.1007/s00032-003-0026-x
J. Fan, X. Jia, and Y. Zhou, A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain, Appl. Math. 64 (2019) 397--407. https://doi.org/10.21136/AM.2019.0246-18
J. Fan and K. Zhao, Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 3949--3967. https://doi.org/10.3934/dcdsb.2018119
V. Georgescu, Some boundary value problem for differential forms on compact Riemannian manifolds, Ann. Mat. Pura Appl. 122 (1979), 159--198. https://doi.org/10.1007/BF02411693
T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183--217. https://doi.org/10.1007/s00285-008-0201-3
D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: I, Jahresber. Dtsch. Math.-Ver. 105 (2003), 103--165.
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399--415. https://doi.org/10.1016/0022-5193(70)90092-5
E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol. 30 (1971) 225--234. https://doi.org/10.1016/0022-5193(71)90050-6
E. Keller and L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol. 30 (1971), 235--248. https://doi.org/10.1016/0022-5193(71)90051-8
H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal. 37 (2006), 1417--1434. https://doi.org/10.1137/S0036141004442197
H. Kozono, M. Miura, and Y. Sugiyama, Existence and uniqueness theorem on mild solutions to the Keller-Segel system coupled with the Navier-Stokes fluid, J. Funct. Anal. 270 (2016) 1663--1683. https://doi.org/10.1016/j.jfa.2015.10.016
P.-L. Lions, Mathematical Topics in Fluid Dynamics, 2, Compressible Models, Oxford Science Publication, Oxford, 1998.
A. Lunardi, Interpolation Theory, Lecture Notes. Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009.
K. Nakao and Y. Taniuchi, An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations, Nonlinear Anal. 176 (2018), 48--55. https://doi.org/10.1016/j.na.2018.05.018
K. Nakao and Y. Taniuchi, Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains, Comm. Math. Phys. 359 (2018), 951--973. https://doi.org/10.1007/s00220-017-3061-0
L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa C1. Sci. 13 (1955), 116--162.
B. Sleeman, M. Ward, and J. Wei, Existence, stability, and dynamics of spike patterns in a chemotaxis model, SIAM J. Appl. Math. 65 (2005), 790--817. https://doi.org/10.1137/S0036139902415117
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 1995.
H.B. da Veiga and L.C.Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations 246 (2009), 597--628. https://doi.org/10.1016/j.jde.2008.02.043
H.B. da Veiga and F.Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory, J. Math. Fluid Mech. 12 (2010), 397--411. https://doi.org/10.1007/s00021-009-0295-4
W. von Wahl, Estimating $nabla u$ by $dv u$ and $cl u$, Math. Meth. Appl. Sci. 15 (1992), 123--143. https://doi.org/10.1002/mma.1670150206
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci. 34 (2011), 176--190. https://doi.org/10.1002/mma.1346
D. Wrzosek, Long time behaviour of solutions to a chemotaxis model with volume filling effect, Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 431--444. https://doi.org/10.1017/S0308210500004649