A Property of Azarin's Limit Set of Subharmonic Functions

Автор(и)

  • A. Chouigui Department of Mechanics and Mathematics V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine
  • A.F. Grishin Department of Mechanics and Mathematics V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine

Ключові слова:

subharmonic function, limit set of Azarin, indicator of growth.

Анотація

Let v(z) be a subharmonic function of order r > 0, and Fr(v) be the limit set in the sense of Azarin. Let z be fixed and I(z) = {u(z) : u Î Fr(v)}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum.

Mathematics Subject Classification: 31A05.

Downloads

Опубліковано

2008-07-14

Як цитувати

(1)
Chouigui, A.; Grishin, A. A Property of Azarin’s Limit Set of Subharmonic Functions. J. Math. Phys. Anal. Geom. 2008, 4, 346-357.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.