A Property of Azarin's Limit Set of Subharmonic Functions
Анотація
Let v(z) be a subharmonic function of order \rho>0, and \mathrm{Fr}(v) be the limit set in the sense of Azarin. Let z be fixed and I(z)=\{u(z):u\in \mathrm{Fr}(v)\}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum.
Mathematics Subject Classification: 31A05.
Ключові слова:
subharmonic function, limit set of Azarin, indicator of growthDownloads
Як цитувати
(1)
A. Chouigui, A. F. Grishin, A Property of Azarin’s Limit Set of Subharmonic Functions, Журн. мат. фіз. анал. геом. 4 (2008), 346-357.
Номер
Розділ
Статті