On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs

Автор(и)

  • O. Khorunzhiy

DOI:

https://doi.org/10.15407/mag13.03.268

Ключові слова:

случайные графы, случайные матрицы, дзета- функция Ихары, распределение собственных значений.

Анотація

Мы рассматриваем ансамбль вещественных симметричных случай- ных матриц H(n,ρ), полученных из детерминантной формы дзета-функции Ихары случайных графов, имеющих n вершин с вероятностью ребра ρ/n. Мы доказываем, что нормированная считающая функция собственных значений H(n,ρ) слабо сходится в среднем, когда n, ρ→∞ и ρ = o(nα), для каждого α > 0 к сдвигу полукругового распределения Вигнера. Наши результаты подтверждают предположение, что бесконечные случайные графы Эрдёша-Реньи удовлетворяют в среднем слабой версии гипотезы Римана теории графов.

Анотацiя

Ми розглядаємо ансамбль дiйсних симетричних випадкових матриць H(n,ρ), отриманих з детермiнантної форми дзета-функцiї Iхари випадкових графiв, що мають n вершин з ймовiрнiстю ребра ρ/n. Ми доводимо, що нормована лiчильна функцiя власних значень H(n,ρ) слабко збiгається в середньому, коли n, ρ→∞ та ρ = o(nα), для кожного α > 0 до зсуву напiвкругового розподiлу Вiгнера. Нашi результати пiдтверджують припущення, що нескiнченнi випадковi графи Ердеша-Реньє задовольняють у середньому слабку версiю гiпотези Рiмана теорiї графiв.

Mathematics Subject Classification: 05C50, 05C80, 15B52, 60F99.

Посилання

H. Bass, The Ihara–Zelberg Zeta Function of a Tree Lattice, Internat. J. Math. 3 (1992), 717–797. https://doi.org/10.1142/S0129167X92000357

B. Bollobás, Random Graphs, Cambridge Studies in Advances Mathematics 73, Cambridge University Press, Cambridge, 2001.

G. Chinta, J. Jorgenson, and A. Karlsson, Heat Kernels on Regular Graphs and Generalized Ihara Zeta Function Formulas, Monash. Math. 178 (2015), 171–190. https://doi.org/10.1007/s00605-014-0685-4

B. Clair and S. Mokhtari-Sharghi, Convergence of Zeta Function of Graphs, Proc. Amer. Math. Soc. 130 (2002), 1881–1886. https://doi.org/10.1090/S0002-9939-02-06532-2

A. Coja-Oghlan, On the Laplacian Eigenvalues of Gn,p , Combin. Probab. Comput. 16 (2007), 923–946.

U. Feige and E. Ofek, Spectral Techniques Applied to Sparse Random Graphs, Random Structures Algorithms 27 (2005), 251–275. https://doi.org/10.1002/rsa.20089

J. Friedman, A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, Mem. Amer. Math. Soc. 195 (2008), no. 910, viii+100 pp.

J. Friedman, Formal Zeta Function Expansions and the Frequency of Ramanujan Graphs, arXiv:1406.4557, 18 pp.

Z. Füredi and J. Komlós, The Eigenvalues of Random Symmetric Matrices, Combinatorica 1 (1981), 233–241.

D. Guido, T. Isola, and M.L. Lapidus, A Trace on Fractal Graphs and the Ihara Zeta Function, Trans. Amer. Math. Soc. 361 (2009), 3041–3070. https://doi.org/10.1090/S0002-9947-08-04702-8

R. Grigorchuk and A. Zuk, The Ihara Zeta Function of Infinite Graphs, the KNS Spectral Measure and Integrable Maps, in: Random walks and geometry, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, 141–180.

M.D. Horton, H.M. Stark, and A.A. Terras, What are Zeta Functions of Graphs and What are They Good for? In: Contemporary Mathematics 415, Quantum Graphs and Their Applications, 2006, 173–190.

Y. Ihara, On Discrete Subgroups of the Two by Two Projective Linear Group over p-adic Fields, J. Math. Soc. Japan 18 (1966), 219–235. https://doi.org/10.2969/jmsj/01830219

O. Khorunzhiy, On High Moments and the Spectral Norm of Large Dilute Wigner Random Matrices, Math. Phys., Analysis, Geom. 10 (2014), 64–125.

O. Khorunzhiy, W. Kirsch and P. Müller, Lifshitz Tails for Spectra of Erdős–Rényi Random Graphs, Ann. Appl. Probab. 16 (2006), 295–309. https://doi.org/10.1214/1050516000000719

O. Khorunzhiy, M. Shcherbina, and V. Vengerovsky, Eigenvalue Distribution of Large Weighted Random Graphs, J. Math. Phys. 45 (2004), 1648–1672. https://doi.org/10.1063/1.1667610

D. Lenz, F. Pogorzelski, and M. Schmidt, The Ihara Zeta Function for Infinite Graphs, arXiv:1408.3522, 38 pp.

B.D. McKay, The Expected Eigenvalue Distribution of a Large Regular Graph, Linear Algebra Appl. 40 (1981), 203–216. https://doi.org/10.1016/0024-3795(81)90150-6

M.L. Mehta, Random Matrices, Elsevier/Academic Press, Amsterdam, 2004.

OEIS Foundation Inc. (2011), Sequence A001006, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

C.E. Porter (ed.), Statistical Theories of Spectra: Fluctuations — a Collection of Reprints and Original Papers, Academic Press, New York, 1965.

P. Ren et al., Quantum Walks, Ihara Zeta Functions and Cospectrality in Regular Graphs, Quantum Inf. Process. 10 (2011), 405–417. https://doi.org/10.1007/s11128-010-0205-y

H.M. Stark and A.A. Terras, Zeta Functions of Finite Graphs and Coverings, Adv. Math., 121 (1996), 124–165. https://doi.org/10.1006/aima.1996.0050

A. Terras, Zeta Functions of Graphs, Cambridge Studies in Advanced Mathematics, 128, Cambridge University Press, Cambridge, 2011.

A.A. Terras and H.M. Stark, Zeta Functions of Finite Ggraphs and Coverings. III. Adv. Math. 208 (2007), 467–489.

E. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions, Ann. of Math. 62 (1955) 548–564. https://doi.org/10.2307/1970079

D. Zhou, Y. Xiao, and Y.-H. He, Seiberg Duality, Quiver Theories, and Ihara’s ZetaFunction, Internat. J. Modern Phys. A 30, 1550118 (2015), 36 pp.

Downloads

Опубліковано

2017-12-17

Як цитувати

(1)
Khorunzhiy, O. On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs. J. Math. Phys. Anal. Geom. 2017, 13, 268-282.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.