On the Growth of the Resolvent of a Toeplitz Operator
DOI:
https://doi.org/10.15407/mag20.04.05Анотація
Досліджено зростання резольвенти оператора Тепліца $T_b$, визначеного на просторі Гарді, через відстань до його спектра $\sigma(T_b)$. Нас в першу чергу цікавить випадок, коли символ $b$ є поліномом Лорана, тобто відповідна матриця Тепліца $T_b$ є стрічковою. Доведено, що для довільного такого символу зростання резольвенти є квадратичним (3.1), а за деяких додаткових припущень - лінійним (2.1). Доведено також квадратичне зростання резольвенти для певного класу нераціональних символів.
Mathematical Subject Classification 2020: 47B35, 30H10, 47G10
Ключові слова:
оператор Теплiца, простiр Гардi, зростання резольвенти, полiном Лорана з властивiстю Жордана, регулярнi полiноми ЛоранаПосилання
N.E. Benamara and N. Nikolski, Resolvent tests for similarity to a normal operator, Proc. London Math. Soc. (3) 78 (1999), No. 3, 585--626. https://doi.org/10.1112/S0024611599001756
A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its application to complex Jacobi matrices, Bull. Lond. Math. Soc. 41 (2009), No. 1, 117--123. https://doi.org/10.1112/blms/bdn109
A. Borichev, L. Golinskii, and S. Kupin, On zeros of analytic functions satisfying non-radial growth conditions, Rev. Mat. Iberoam. 34 (2018), No. 3, 1153--1176. https://doi.org/10.4171/rmi/1020
A. Böttcher and S. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, Philadelphia 2005. https://doi.org/10.1137/1.9780898717853
A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-662-02652-6
A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Springer Science NY, 1999. https://doi.org/10.1007/978-1-4612-1426-7
Ph. Briet, J.-C. Cuenin, L. Golinskii, and S. Kupin, Lieb-Thirring inequalities for an effective Hamiltonian of bilayer graphene, Journal of Spectral Theory 11 (2021), 1145--1178. https://doi.org/10.4171/jst/368
A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 231 (1963), 89--102. https://doi.org/10.1515/crll.1964.213.89
D. Clark, On a similarity theory for rational Toeplitz operators, J. Reine Angew. Math. 320 (1980), 6--31. https://doi.org/10.1515/crll.1980.320.6
D. Clark, On Toeplitz operators with loops, J. Operator Theory 4 (1980), No. 1, 37--54.
D. Clark, and J. Morrel, On Toeplitz operators and similarity, Amer. Jour. Math. 100 , No. 5 (1978), 973--986. https://doi.org/10.2307/2373957
E. B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, 106 , Cambridge University Press, 2007.
P. Duren, On extension of a result of Beurling on invariant subspaces, Trans. Amer. Math. Soc. 99 (1961), No. 2, 320--324. https://doi.org/10.1090/S0002-9947-1961-0119085-5
P. Duren, On the spectrum of a Toeplitz operators, Pacific Journ. Math. 14 (1964), 21--29. https://doi.org/10.2140/pjm.1964.14.21
S. Favorov and L. Golinskii, A Blaschke-Type condition for analytic and subharmonic functions and Application to Contraction Operators, Amer. Math Soc. Transl. 226 (2009), 37--47. https://doi.org/10.1090/trans2/226/04
S. Favorov and L. Golinskii, Blaschke-type conditions for analytic and subharmonic functions in the unit disk: local analogs and inverse problems, Comput. Methods Funct. Theory, 12 (2012), No. 1, 151--166. https://doi.org/10.1007/BF03321819
S. Favorov and L. Golinskii, Blaschke-type conditions on unbounded domains, generalized convexity, and applications in perturbation theory, Revista Mat. Iberoamericana 31 (2015), 1--32. https://doi.org/10.4171/rmi/824
L. Gambler, A Study of Rational Toeplitz Operators, Ph.D. Thesis, SUNY at Stony Brook, 1977.
U. Grenander and G. Szegő, Toeplitz Forms and Their Applications, University of California Press, Berkeley, 1958. https://doi.org/10.1525/9780520355408
N. Nikolski, Toeplitz matrices and Operators, Cambridge Studies in Advanced Mathematics, 182 , Cambridge University Press, 2020. https://doi.org/10.1017/9781108182577
N. Nikolski and S. Treil, Linear resolvent growth of rank one perturbation of a unitary operator does not imply its similarity to a normal operator, J. Anal. Math. 87 (2002), 415--431. https://doi.org/10.1007/BF02868483
V. Peller, Spectrum, similarity, and invariant subspaces of Toeplitz operators, Math. USSR Izv. 29 (1987), 133--144. https://doi.org/10.1070/IM1987v029n01ABEH000963
Q. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, Oxford, 2002. https://doi.org/10.1093/oso/9780198534938.001.0001
S. Treil, Resolvent of the Toeplitz operator may increase arbitrarily fast, J. Math. Sci. 44 (1989), 868--869. https://doi.org/10.1007/BF01463199
D. Wang, Similarity of smooth Toeplitz operators, J. Operator Theory 12 (1984), No. 2, 319--329.
D. Yakubovich, On the spectral theory of Toeplitz operators with a smooth symbol, Algebra i Analiz 3 (1991), No. 4, 208--226 (Russian); Engl. transl.: St. Petersburg Math. J. 3 (1992), No. 4, 903--921.
D. Yakubovich, Dual piecewise analytic bundle shift models of linear operators, J. Funct. Anal. 136 (1996), No. 2, 294--330. https://doi.org/10.1006/jfan.1996.0032