The Generalized Marchenko Method in the Inverse Scattering Problem for a First-Order Linear System with Energy-Dependent Potentials

Автор(и)

  • Tuncay Aktosun Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019, USA
  • Ramazan Ercan Dept. of Mathematics and Statistics, Saint Louis University, St. Louis, MO 63103, USA
  • Mehmet Unlu Department of Mathematics, Recep Tayyip Erdogan University, 53100 Rize, Turkey

DOI:

https://doi.org/10.15407/mag19.01.003

Анотація

Метод Марченка розповсюджено на обернену задачу розсiювання для системи лiнiйних диференцiальних рiвнянь першого порядку, якi мiстять потенцiали пропорцiйнi спектральному параметру. Вiдповiдну систему iнтегральних рiвнянь Марченка одержано таким чином, що цей метод може бути застосованим до певних систем, для яких ранiше застосування методу Марченка було неможливим. Показано як потенцiали i розв’язки Йоста лiнiйної системи будуються з розв’язкiв системи Марченка. Iнформацiя про зв’язанi стани для лiнiйної системи з будь-якою кiлькiстю зв’язаних станiв i будь-якими кратностями описана в термiнах пари трiйок сталих матриць. У випадку, коли потенцiали в лiнiйнiй системi є безвiдбивними, знайдено деякi формули явних розв’язкiв в замкненiй формi для потенцiалiв i для розв’язкiв Йоста лiнiйної системи. Теорiя iлюстрована деякими явними прикладами.

Mathematical Subject Classification 2020: 34A55, 34L25, 34L40, 47A40

Ключові слова:

метод Марченка, узагальнене iнтегральне рiвняння Марченка, зворотнє розсiювання, лiнiйна система першого порядку, енергетично залежний потенцiал, розв’язки Йоста

Посилання

M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge Univ. Press, Cambridge, 1991. https://doi.org/10.1017/CBO9780511623998

M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249--315. https://doi.org/10.1002/sapm1974534249

M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981. https://doi.org/10.1137/1.9781611970883

Z.S. Agranovich and V.A. Marchenko, The inverse problem of scattering theory, Gordon and Breach, New York, 1963.

T. Aktosun, T. Busse, F. Demontis, and C. van der Mee, Symmetries for exact solutions to the nonlinear Schrödinger equation, J. Phys. A 43 (2010), 025202. https://doi.org/10.1088/1751-8113/43/2/025202

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the focusing nonlinear Schrödinger equation, Inverse Problems 23 (2007), 2171--2195. https://doi.org/10.1088/0266-5611/23/5/021

T. Aktosun, F. Demontis, and C. van der Mee, Exact solutions to the sine-Gordon equation, J. Math.Phys. 51 (2010), 123521. https://doi.org/10.1063/1.3520596

T. Aktosun and R. Ercan, Direct and inverse scattering problems for a first-order system with energy-dependent potentials, Inverse Problems 35 (2019), 085002. https://doi.org/10.1088/1361-6420/ab2070

T. Aktosun and R. Ercan, Direct and inverse scattering problems for the first-order discrete system associated with the derivative NLS system, Stud. Appl. Math. 148 (2022), 270--339. https://doi.org/10.1111/sapm.12441

T. Aktosun, R. Ercan, and M. Unlu, The Marchenko method to solve the general system of derivative nonlinear Schrödinger equations, preprint, https://arxiv.org/abs/2209.08426

T. Aktosun, R. Ercan, and M. Unlu, The Mathematica notebook to solve a first-order linear system in the reflectionless case. Available from the authors: https://fermat.uta.edu

T. Aktosun and M. Klaus, Chapter 2.2.4, Inverse theory: problem on the line, Scattering (Eds. E.R. Pike and P.C. Sabatier), Academic Press, London, 2001, pp. 770--785. https://doi.org/10.1016/B978-012613760-6/50041-3

T. Aktosun and V.G. Papanicolaou, Inverse problem with transmission eigenvalues for the discrete Schrödinger equation, J. Math. Phys. 56 (2015), 082101. https://doi.org/10.1063/1.4927264

T. Aktosun and C. van der Mee, Explicit solutions to the Korteweg--de Vries equation on the half line, Inverse Problems 22 (2006), 2165--2174. https://doi.org/10.1088/0266-5611/22/6/015

T. Aktosun and R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation, Inverse Problems 22 (2006), 89--114. https://doi.org/10.1088/0266-5611/22/1/006

H. Bart, I. Gohberg, and M. A. Kaashoek, Minimal factorization of matrix and operator functions, Birkhäuser, Basel, 1979. https://doi.org/10.1007/978-3-0348-6293-6

T.N. Busse, Generalized inverse scattering transform for the nonlinear Schrödinger equation, Ph.D. thesis, The University of Texas at Arlington, 2008.

T.N. Busse Martines, Generalized inverse scattering transform for the nonlinear Schrödinger equation for bound states with higher multiplicities, Electron. J. Differential Equations 2017 (2017), No. 179, 1--15.

F. Calogero and A. Degasperis, Spectral transform and solitons, Vol. 1, North Holland, New York, 1982.

K. Chadan and P.C. Sabatier, Inverse problems in quantum scattering theory, 2nd ed., Springer, New York, 1989. https://doi.org/10.1007/978-3-642-83317-5

R. Ercan, Scattering and inverse scattering on the line for a first-order system with energy-dependent potentials, Ph.D. thesis, The University of Texas at Arlington, 2018.

L.D. Faddeev, The inverse problem in the quantum theory of scattering, J. Math. Phys. 4 (1963), 72--104. https://doi.org/10.1063/1.1703891

L.D. Faddeev, Properties of the $S$-matrix of the one-dimensional Schrödinger equation, Amer. Math. Soc. Transl. (Ser. 2) 65 (1967), 139--166. https://doi.org/10.1090/trans2/065/04

C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095--1097. https://doi.org/10.1103/PhysRevLett.19.1095

D.J. Kaup and A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978), 798--801. https://doi.org/10.1063/1.523737

P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), 467--490. https://doi.org/10.1002/cpa.3160210503

B.M. Levitan, Inverse Sturm--Liouville problems, VNU Science Press, Utrecht, 1987. https://doi.org/10.1515/9783110941937

V.A. Marchenko, The construction of the potential energy from the phases of the scattered waves, Dokl. Akad. Nauk SSSR 104 (1955), 695--698 (Russian).

V.A. Marchenko, Sturm--Liouville operators and applications, Birkhäuser, Basel, 1986. https://doi.org/10.1007/978-3-0348-5485-6

R.G. Newton, Inverse scattering. I. One dimension, J. Math. Phys. 21 (1980), 493--505. https://doi.org/10.1063/1.524447

R.G. Newton, The Marchenko and Gel'fand--Levitan methods in the inverse scattering problem in one and three dimensions, Conference on inverse scattering: theory and application (Eds. J.B. Bednar, R. Redner, E. Robinson, and A. Weglein), SIAM, Philadelphia, 1983, 1--74.

S. Novikov, S.V. Manakov, L.P. Pitaevskii, and V. E. Zakharov, Theory of solitons: the inverse scattering method, Consultants Bureau, New York, 1984.

T. Tsuchida, New reductions of integrable matrix partial differential equations: $Sp(m)$-invariant systems, J. Math. Phys. 51 (2010), 053511. https://doi.org/10.1063/1.3315862

Downloads

Як цитувати

(1)
Aktosun, T.; Ercan, R.; Unlu, M. The Generalized Marchenko Method in the Inverse Scattering Problem for a First-Order Linear System with Energy-Dependent Potentials. Журн. мат. фіз. анал. геом. 2023, 19, 3-58.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.