Ricci Solitons on Lorentzian Four-Dimensional Generalized Symmetric Spaces

Автор(и)

  • Amel Bouharis Université d'Oran 1 Ahmed Ben Bella, BP 1524, ELM Naouer 31000, Oran, Algeria
  • Bachir Djebbar Université des Sciences et de la Technologie d'Oran "Mohamed Boudiaf", BP 1505, Bir El Djir 31000, Oran, Algeria

DOI:

https://doi.org/10.15407/mag14.02.132

Ключові слова:

лоренцева метрика, солiтони Рiччi, градiєнтнi солiтони Рiччi, узагальненi симетричнi простори.

Анотація

Доведено iснування нетривiальних (тобто, неейнштейнiвських) солiтонiв Рiччi на чотиривимiрних лоренцевих узагальнених симетричних просторах. Бiльш того, показано, що тiльки стiйкi солiтони Рiччi можуть бути градiєнтними.

2010:53C20, 53C21.

Посилання

P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007), 65–91. https://doi.org/10.1515/CRELLE.2007.053

W. Batat, M. Brozos-Vazquez, E. Garcı́a-Rı́o, and S. Gavino-Fernández, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc. 43 (2011), 1219–1227. https://doi.org/10.1112/blms/bdr057

W. Batat and K. Onda, Four-dimensional pseudo-Riemannian generalized symmetric spaces which are algebraic Ricci solitons, Results Math. 64 (2013), 254–267. https://doi.org/10.1007/s00025-013-0312-z

W. Batat and K. Onda, Ricci and Yamabe solitons on second-order symmetric, and plane wave 4-dimensional Lorentzian manifolds, J. Geom. 105 (2014), 561–575. https://doi.org/10.1007/s00022-014-0220-8

M. Brozos-Vázquez, G. Calvaruso, E. Garcı́a-Rı́o, and S. Gavino-Fernández, Threedimensional Lorentzian homogeneous Ricci solitons, Israel J. Math. 188 (2012), 385–403. https://doi.org/10.1007/s11856-011-0124-3

G. Calvaruso, Oscillator spacetimes are Ricci solitons, Nonlinear Anal. 140 (2016), 254–269. https://doi.org/10.1016/j.na.2016.03.008

G. Calvaruso and B. De Leo, Curvature properties of four-dimensional generalized symmetric spaces, J. Geom. 90 (2008), 30–46. https://doi.org/10.1007/s00022-008-2046-8

G. Calvaruso and B. De Leo, Ricci solitons on Lorentzian Walker three-manifolds, Acta Math. Hungar. 132 (2011), 269–293. https://doi.org/10.1007/s10474-010-0049-z

G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci solitons, Int. J. Geom. Methods Mod. Phys. 12 (2015), 1550056, 21 pp.

G. Calvaruso and E. Rosado, Ricci solitons on low-dimensional generalized symmetric spaces, J. Geom. Phys. 112 (2017), 106–117. https://doi.org/10.1016/j.geomphys.2016.11.008

L.F. Cerbo, Generic properties of homogeneous Ricci solitons, Adv. Geom. 14 (2014), 225–237. https://doi.org/10.1515/advgeom-2013-0031

J. Cerny and O. Kowalski, Classification of generalized symmetric pseudo-Riemannian spaces of dimension n ≤ 4, Tensor (N.S.) 38 (1982), 256–267.

J. Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011), 1–21. https://doi.org/10.1515/crelle.2011.001

K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata 147 (2010), 313–322. https://doi.org/10.1007/s10711-009-9456-0

T.L. Payne, The existence of soliton metrics for nilpotent Lie groups, Geom. Dedicata 145 (2010), 71–88. https://doi.org/10.1007/s10711-009-9404-z

Downloads

Опубліковано

2018-07-11

Як цитувати

(1)
Bouharis, A.; Djebbar, B. Ricci Solitons on Lorentzian Four-Dimensional Generalized Symmetric Spaces. J. Math. Phys. Anal. Geom. 2018, 14, 132-140.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.